{"title":"Effect of fabric anisotropy on mechanical behavior and undrained cyclic resistance of granular materials","authors":"Xiao-Tian Yang, Yan-Guo Zhou, Qiang Ma, Yun-Min Chen","doi":"10.1016/j.compgeo.2025.107292","DOIUrl":null,"url":null,"abstract":"<div><div>The stress state and density of soil have been considered as the key factors to determine the liquefaction resistance. However, the results of seismic liquefaction case histories, laboratory tests and centrifuge model tests show that the fabric characteristics also influence liquefaction resistance, even more significantly than the contributions of stress state and density. In this study, anisotropic specimens with different consolidation histories were prepared using the 3D Discrete Element Method (DEM) to investigate the influence of fabric characteristics on the mechanical behavior of granular materials and the underlying mechanisms. The simulations revealed that under monotonic shear conditions, horizontally anisotropic specimens exhibited strain hardening and dilatancy characteristics, as well as higher peak strength. Under cyclic shear condition, the normalized liquefaction resistance of the specimens showed a strong linear relationship with the degree of anisotropy, independent of confining pressures and density. Microscopic results indicate that the fabric arrangement aligned with the loading direction leads to the evolution of the mechanical coordination number and average contact force in a manner favorable to resisting loads, which is the underlying mechanism influencing macroscopic mechanical properties. Additionally, the evolution patterns of contact normal magnitude and angle in anisotropic granular materials under cyclic loading conditions were also analyzed. The results of this study provided a new perspective on the macroscopic mechanical properties and the evolution of the microstructure of granular soils under anisotropic conditions.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"184 ","pages":"Article 107292"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25002411","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The stress state and density of soil have been considered as the key factors to determine the liquefaction resistance. However, the results of seismic liquefaction case histories, laboratory tests and centrifuge model tests show that the fabric characteristics also influence liquefaction resistance, even more significantly than the contributions of stress state and density. In this study, anisotropic specimens with different consolidation histories were prepared using the 3D Discrete Element Method (DEM) to investigate the influence of fabric characteristics on the mechanical behavior of granular materials and the underlying mechanisms. The simulations revealed that under monotonic shear conditions, horizontally anisotropic specimens exhibited strain hardening and dilatancy characteristics, as well as higher peak strength. Under cyclic shear condition, the normalized liquefaction resistance of the specimens showed a strong linear relationship with the degree of anisotropy, independent of confining pressures and density. Microscopic results indicate that the fabric arrangement aligned with the loading direction leads to the evolution of the mechanical coordination number and average contact force in a manner favorable to resisting loads, which is the underlying mechanism influencing macroscopic mechanical properties. Additionally, the evolution patterns of contact normal magnitude and angle in anisotropic granular materials under cyclic loading conditions were also analyzed. The results of this study provided a new perspective on the macroscopic mechanical properties and the evolution of the microstructure of granular soils under anisotropic conditions.
期刊介绍:
The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.