A Novel “Mobile Phase Braking Drift Technique” Utilized for the Enantioselective Residual Analysis of Cyflumetofen and the Investigation of Its Enantiomeric Migration during Tea Growth, Processing, and Brewing
{"title":"A Novel “Mobile Phase Braking Drift Technique” Utilized for the Enantioselective Residual Analysis of Cyflumetofen and the Investigation of Its Enantiomeric Migration during Tea Growth, Processing, and Brewing","authors":"Yating Ning, Xiangyun Wang, Yue Hu, Yan Zhao, Yaqi Wang, Fengjian Luo, Liezhong Chen, Xinzhong Zhang","doi":"10.1021/acs.jafc.5c00891","DOIUrl":null,"url":null,"abstract":"Cyflumetofen (CYF) enantiomers were first separated by reversed-phase liquid chromatography. The enantioselectivity during tea growth, processing, and brewing was studied by a reversed-phase ultrahigh performance liquid chromatography tandem mass spectrometry (RP-UHPLC-MS/MS) method. The linearity ranges of CYF enantiomers in different matrix-matched calibration curves were from 0.0025 to 1.0 mg/L, with satisfactory correlation coefficients (<i>R</i><sup>2</sup> ≥ 0.9985). The average recoveries of (+)-CYF and (−)-CYF were 76.3–116.9 and 82.9–116.9%, respectively. The limits of quantification (LOQs) for the two enantiomers were 2.5 μg/kg in fresh tea leaves and tea, and 0.25 μg/L in tea infusion. The dissipation half-life (<i>t</i><sub>1/2</sub>) of (+)-CYF and (−)-CYF during fresh tea growth was 1.04 days and 1.23 days, respectively. After processing the fresh tea leaves into green tea (black tea), the processing factors (PFs) of (+)-CYF and (−)-CYF were 0.15–0.26 (0.18–0.61) and 0.11–0.26 (0.20–0.60), respectively. The total leaching rates (TLRs) of (+)-CYF and (−)-CYF from green tea (black tea) to tea infusion were 2.7% (4.2%) and 2.1% (4.9%). The enantiomeric fractions (EFs) of CYF migration during tea growth, processing, and brewing were 0.48–0.50, 0.44–0.56, and 0.47–0.57, respectively, indicating no enantioselectivity.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"21 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.5c00891","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cyflumetofen (CYF) enantiomers were first separated by reversed-phase liquid chromatography. The enantioselectivity during tea growth, processing, and brewing was studied by a reversed-phase ultrahigh performance liquid chromatography tandem mass spectrometry (RP-UHPLC-MS/MS) method. The linearity ranges of CYF enantiomers in different matrix-matched calibration curves were from 0.0025 to 1.0 mg/L, with satisfactory correlation coefficients (R2 ≥ 0.9985). The average recoveries of (+)-CYF and (−)-CYF were 76.3–116.9 and 82.9–116.9%, respectively. The limits of quantification (LOQs) for the two enantiomers were 2.5 μg/kg in fresh tea leaves and tea, and 0.25 μg/L in tea infusion. The dissipation half-life (t1/2) of (+)-CYF and (−)-CYF during fresh tea growth was 1.04 days and 1.23 days, respectively. After processing the fresh tea leaves into green tea (black tea), the processing factors (PFs) of (+)-CYF and (−)-CYF were 0.15–0.26 (0.18–0.61) and 0.11–0.26 (0.20–0.60), respectively. The total leaching rates (TLRs) of (+)-CYF and (−)-CYF from green tea (black tea) to tea infusion were 2.7% (4.2%) and 2.1% (4.9%). The enantiomeric fractions (EFs) of CYF migration during tea growth, processing, and brewing were 0.48–0.50, 0.44–0.56, and 0.47–0.57, respectively, indicating no enantioselectivity.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.