Xiaofang Ren , Ke Jiang , Jiaxin Yin , Zhigang Ma , Zhifeng Chen , Kun Yang , Shengjun Liu
{"title":"Integrated transcriptomic and metabolomic analysis of goose epididymis reveals molecular markers associated with sperm mobility","authors":"Xiaofang Ren , Ke Jiang , Jiaxin Yin , Zhigang Ma , Zhifeng Chen , Kun Yang , Shengjun Liu","doi":"10.1016/j.psj.2025.105180","DOIUrl":null,"url":null,"abstract":"<div><div>The low fertility of geese has long constrained the development of the geese industry. Sperm quality plays a critical role in fertility, and sperm mobility (<strong>SM</strong>) serves as a key indicator of sperm quality. However, the molecular mechanisms underlying SM remain largely unexplored. The objective of this study was to identify molecular markers associated with SM in the epididymis of Zi geese (Anser cygnoides L.). The SM of 40 one-year-old ganders was assessed. Based on SM values, six ganders were selected: three with the highest SM (H group: <em>n</em> = 3, SM = 0.43 ± 0.02) and three with the lowest SM (L group: <em>n</em> = 3, SM = 0.10 ± 0.01, <em>P</em> < 0.001). Semen quality parameters, fertility, and hormone levels were measured in both groups. Epididymal tissues from the six ganders were subjected to transcriptomic and metabolomic analyses. Results identified 438 differentially expressed genes (<strong>DEGs</strong>) between the groups, primarily associated with transmembrane transport of proteins and ions. These DEGs were enriched in pathways such as “alanine, aspartate and glutamate metabolism,” “butanoate metabolism,” and the “PPAR signaling pathway.” Among these, <em>ATP12A, ATP1B4</em>, and <em>CNDP1</em> were identified as key genes regulating SM. Additionally, 486 metabolites showed significant differences between the groups in both positive and negative ion modes. Integration of transcriptomic and metabolomic data revealed critical gene-metabolite pairs, including <em>CNDP1</em>–citric acid, implicated in SM regulation. Notably, the “arginine biosynthesis” pathway was significantly enriched by both DEGs and differential metabolites. In conclusion, this study provides novel insights into the molecular mechanisms regulating SM in the epididymis and lays a theoretical foundation for geese breeding programs.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"104 7","pages":"Article 105180"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032579125004225","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The low fertility of geese has long constrained the development of the geese industry. Sperm quality plays a critical role in fertility, and sperm mobility (SM) serves as a key indicator of sperm quality. However, the molecular mechanisms underlying SM remain largely unexplored. The objective of this study was to identify molecular markers associated with SM in the epididymis of Zi geese (Anser cygnoides L.). The SM of 40 one-year-old ganders was assessed. Based on SM values, six ganders were selected: three with the highest SM (H group: n = 3, SM = 0.43 ± 0.02) and three with the lowest SM (L group: n = 3, SM = 0.10 ± 0.01, P < 0.001). Semen quality parameters, fertility, and hormone levels were measured in both groups. Epididymal tissues from the six ganders were subjected to transcriptomic and metabolomic analyses. Results identified 438 differentially expressed genes (DEGs) between the groups, primarily associated with transmembrane transport of proteins and ions. These DEGs were enriched in pathways such as “alanine, aspartate and glutamate metabolism,” “butanoate metabolism,” and the “PPAR signaling pathway.” Among these, ATP12A, ATP1B4, and CNDP1 were identified as key genes regulating SM. Additionally, 486 metabolites showed significant differences between the groups in both positive and negative ion modes. Integration of transcriptomic and metabolomic data revealed critical gene-metabolite pairs, including CNDP1–citric acid, implicated in SM regulation. Notably, the “arginine biosynthesis” pathway was significantly enriched by both DEGs and differential metabolites. In conclusion, this study provides novel insights into the molecular mechanisms regulating SM in the epididymis and lays a theoretical foundation for geese breeding programs.
期刊介绍:
First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers.
An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.