{"title":"A few-shot learning-based dual-input neural network for complex spectrogram recognition system with millimeter-wave radar","authors":"Kaiyu Chen, Shaoxi Wang, Wei Li, Yucheng Wang, Cunqian Feng, Yannian Zhou, Jian Cao, Binfeng Zong, Minming Gu","doi":"10.1007/s40747-025-01848-2","DOIUrl":null,"url":null,"abstract":"<p>Graph data-driven machine learning methods for human activity recognition (HAR) have achieved success recently using sufficient data. In the realm of everyday life, we encounter a notable challenge: the scarcity of labeled radar samples. This limitation is compounded by the stark disparities in data distribution between simulated and measured activity domains. In this article, a generalized graph contrastive learning framework (DSMFT-Net) incorporated with Boulic-Thalmann simulation model for few-shot HAR is proposed. DSMFT-Net combines a clustering strategy with contrastive learning to develop a robust, domain-invariant feature representation. Particularly, the method divided into two phases: single radar range Doppler spectrogram prototypical contrast, enhancing the classification discriminative features by improving the compaction of prototypes and instances within a domain. Then, cross prototypical contrast of simulated and measured radar range Doppler spectrogram domain, focuses on discovering domain-invariant features through prototype-instance matching and proximity exploration. Moreover, mutual information maximization ensures the reliability of predictions, while pseudo-label information aids in self-supervised contrastive pre-training by comparing positive and negative sample pairs. The effectiveness of the model is empirically validated through testing conducted in both open and complex office environments. The experimental results indicate that the proposed method achieves an average accuracy of 93.3% under 5-shot setting and 96.5% under 10-shot setting across six human activity recognition tasks. These findings highlight the effectiveness of the proposed method in achieving high performance even with limited labeled data.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"128 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01848-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Graph data-driven machine learning methods for human activity recognition (HAR) have achieved success recently using sufficient data. In the realm of everyday life, we encounter a notable challenge: the scarcity of labeled radar samples. This limitation is compounded by the stark disparities in data distribution between simulated and measured activity domains. In this article, a generalized graph contrastive learning framework (DSMFT-Net) incorporated with Boulic-Thalmann simulation model for few-shot HAR is proposed. DSMFT-Net combines a clustering strategy with contrastive learning to develop a robust, domain-invariant feature representation. Particularly, the method divided into two phases: single radar range Doppler spectrogram prototypical contrast, enhancing the classification discriminative features by improving the compaction of prototypes and instances within a domain. Then, cross prototypical contrast of simulated and measured radar range Doppler spectrogram domain, focuses on discovering domain-invariant features through prototype-instance matching and proximity exploration. Moreover, mutual information maximization ensures the reliability of predictions, while pseudo-label information aids in self-supervised contrastive pre-training by comparing positive and negative sample pairs. The effectiveness of the model is empirically validated through testing conducted in both open and complex office environments. The experimental results indicate that the proposed method achieves an average accuracy of 93.3% under 5-shot setting and 96.5% under 10-shot setting across six human activity recognition tasks. These findings highlight the effectiveness of the proposed method in achieving high performance even with limited labeled data.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.