An extended TOPSIS technique based on correlation coefficient for interval-valued q-rung orthopair fuzzy hypersoft set in multi-attribute group decision-making
IF 5 2区 计算机科学Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Rana Muhammad Zulqarnain, Imran Siddique, Sameh Askar, Ahmad M. Alshamrani, Dragan Pamucar, Vladimir Simic
{"title":"An extended TOPSIS technique based on correlation coefficient for interval-valued q-rung orthopair fuzzy hypersoft set in multi-attribute group decision-making","authors":"Rana Muhammad Zulqarnain, Imran Siddique, Sameh Askar, Ahmad M. Alshamrani, Dragan Pamucar, Vladimir Simic","doi":"10.1007/s40747-025-01838-4","DOIUrl":null,"url":null,"abstract":"<p>The accurate determination of results in decision analysis is usually predicated on the association between two factors. Although generating data for analytical purposes presents an apparent hurdle, the data obtained may present hurdles in its interpretation. Correlation coefficients can be used to analyze the interaction between two factors and their variations. These coefficients deliver an objective description of the association between parameters, assisting in predicting and assessing alterations between particular parameters. The purpose of this research is to explore the applicability of correlation coefficients (CC) and weighted correlation coefficients (WCC) in interval-valued q-rung orthopair fuzzy hypersoft sets (IVq-ROFHSS) structures with their essential characteristics. These measures are developed to address the inevitable confusion, inconsistency, and volatility in real-life decision-making challenges. The implementation of these components attempts to boost the productivity of the technique for order preference by similarity to the ideal solution (TOPSIS) method. The computational models with correlation constraints are presented to determine the reliability and regularity of the proposed method. This research proves that the proposed technique is effective for multi-attribute group decision-making (MAGDM), particularly for analyzing and prioritizing convoluted data sets. Moreover, a numerical illustration is presented to clarify how the advocated decision-making methodology can be implemented in reality in evaluating bio-medical disposal techniques for hospitals. This study determines incineration as the most beneficial method for BMW disposal, demonstrating its more efficient use of alternative disposal techniques. A comparative analysis further substantiates the feasibility and effectiveness of the proposed approach over other decision-making techniques.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"33 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01838-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate determination of results in decision analysis is usually predicated on the association between two factors. Although generating data for analytical purposes presents an apparent hurdle, the data obtained may present hurdles in its interpretation. Correlation coefficients can be used to analyze the interaction between two factors and their variations. These coefficients deliver an objective description of the association between parameters, assisting in predicting and assessing alterations between particular parameters. The purpose of this research is to explore the applicability of correlation coefficients (CC) and weighted correlation coefficients (WCC) in interval-valued q-rung orthopair fuzzy hypersoft sets (IVq-ROFHSS) structures with their essential characteristics. These measures are developed to address the inevitable confusion, inconsistency, and volatility in real-life decision-making challenges. The implementation of these components attempts to boost the productivity of the technique for order preference by similarity to the ideal solution (TOPSIS) method. The computational models with correlation constraints are presented to determine the reliability and regularity of the proposed method. This research proves that the proposed technique is effective for multi-attribute group decision-making (MAGDM), particularly for analyzing and prioritizing convoluted data sets. Moreover, a numerical illustration is presented to clarify how the advocated decision-making methodology can be implemented in reality in evaluating bio-medical disposal techniques for hospitals. This study determines incineration as the most beneficial method for BMW disposal, demonstrating its more efficient use of alternative disposal techniques. A comparative analysis further substantiates the feasibility and effectiveness of the proposed approach over other decision-making techniques.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.