Support-Free Implantable Photoelectrochemical Hydrogel Fiber Enables Long-Term Monitoring in Free-Behaving Organisms

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Yanwen Liu, Su Li, Xinmeng Wang, Xiya Liu, Juan Wang, Zhihong Liu
{"title":"Support-Free Implantable Photoelectrochemical Hydrogel Fiber Enables Long-Term Monitoring in Free-Behaving Organisms","authors":"Yanwen Liu, Su Li, Xinmeng Wang, Xiya Liu, Juan Wang, Zhihong Liu","doi":"10.1021/acs.analchem.5c01013","DOIUrl":null,"url":null,"abstract":"The development of long-term and in situ in vivo monitoring techniques is critical for environmental biology, life sciences, and analytical chemistry. However, existing in vivo analysis methods are limited by the complex and large instruments or adverse impacts of rigid implanted substrates on living organisms, making it difficult to achieve continuous in situ detection. Herein, taking advantage of the flexibility and biocompatibility of the hydrogel fiber and solving its instability or opacity problems caused by ionic or polymer conduction for hydrogel fibers, a photoelectrochemical (PEC) hydrogel fiber free of conventional rigid substrate support is successfully prepared and achieves long-term tracking of persistent organic pollutants in free-behaving fish, timely identifying their environmental ecological risks. This support-free PEC fiber exhibits fascinating properties of electrical and light conductivity, flexibility, antifouling ability, and biocompatibility, allowing it to be implanted in vivo for 70 days without experiencing significant loss of sensing performance and causing apparent inflammation and immune responses. Moreover, the fabricated fiber not only achieves in vitro pentachlorophenol detection with high selectivity, low detection limit, good reproducibility, and dual-mode sensing but also realizes in vivo monitoring of pentachlorophenol enriched in fish brain for up to 70 days with satisfactory reliability, unraveling its tempting potential for various in vivo application.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"108 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c01013","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of long-term and in situ in vivo monitoring techniques is critical for environmental biology, life sciences, and analytical chemistry. However, existing in vivo analysis methods are limited by the complex and large instruments or adverse impacts of rigid implanted substrates on living organisms, making it difficult to achieve continuous in situ detection. Herein, taking advantage of the flexibility and biocompatibility of the hydrogel fiber and solving its instability or opacity problems caused by ionic or polymer conduction for hydrogel fibers, a photoelectrochemical (PEC) hydrogel fiber free of conventional rigid substrate support is successfully prepared and achieves long-term tracking of persistent organic pollutants in free-behaving fish, timely identifying their environmental ecological risks. This support-free PEC fiber exhibits fascinating properties of electrical and light conductivity, flexibility, antifouling ability, and biocompatibility, allowing it to be implanted in vivo for 70 days without experiencing significant loss of sensing performance and causing apparent inflammation and immune responses. Moreover, the fabricated fiber not only achieves in vitro pentachlorophenol detection with high selectivity, low detection limit, good reproducibility, and dual-mode sensing but also realizes in vivo monitoring of pentachlorophenol enriched in fish brain for up to 70 days with satisfactory reliability, unraveling its tempting potential for various in vivo application.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信