Yanwen Liu, Su Li, Xinmeng Wang, Xiya Liu, Juan Wang, Zhihong Liu
{"title":"Support-Free Implantable Photoelectrochemical Hydrogel Fiber Enables Long-Term Monitoring in Free-Behaving Organisms","authors":"Yanwen Liu, Su Li, Xinmeng Wang, Xiya Liu, Juan Wang, Zhihong Liu","doi":"10.1021/acs.analchem.5c01013","DOIUrl":null,"url":null,"abstract":"The development of long-term and in situ in vivo monitoring techniques is critical for environmental biology, life sciences, and analytical chemistry. However, existing in vivo analysis methods are limited by the complex and large instruments or adverse impacts of rigid implanted substrates on living organisms, making it difficult to achieve continuous in situ detection. Herein, taking advantage of the flexibility and biocompatibility of the hydrogel fiber and solving its instability or opacity problems caused by ionic or polymer conduction for hydrogel fibers, a photoelectrochemical (PEC) hydrogel fiber free of conventional rigid substrate support is successfully prepared and achieves long-term tracking of persistent organic pollutants in free-behaving fish, timely identifying their environmental ecological risks. This support-free PEC fiber exhibits fascinating properties of electrical and light conductivity, flexibility, antifouling ability, and biocompatibility, allowing it to be implanted in vivo for 70 days without experiencing significant loss of sensing performance and causing apparent inflammation and immune responses. Moreover, the fabricated fiber not only achieves in vitro pentachlorophenol detection with high selectivity, low detection limit, good reproducibility, and dual-mode sensing but also realizes in vivo monitoring of pentachlorophenol enriched in fish brain for up to 70 days with satisfactory reliability, unraveling its tempting potential for various in vivo application.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"108 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c01013","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of long-term and in situ in vivo monitoring techniques is critical for environmental biology, life sciences, and analytical chemistry. However, existing in vivo analysis methods are limited by the complex and large instruments or adverse impacts of rigid implanted substrates on living organisms, making it difficult to achieve continuous in situ detection. Herein, taking advantage of the flexibility and biocompatibility of the hydrogel fiber and solving its instability or opacity problems caused by ionic or polymer conduction for hydrogel fibers, a photoelectrochemical (PEC) hydrogel fiber free of conventional rigid substrate support is successfully prepared and achieves long-term tracking of persistent organic pollutants in free-behaving fish, timely identifying their environmental ecological risks. This support-free PEC fiber exhibits fascinating properties of electrical and light conductivity, flexibility, antifouling ability, and biocompatibility, allowing it to be implanted in vivo for 70 days without experiencing significant loss of sensing performance and causing apparent inflammation and immune responses. Moreover, the fabricated fiber not only achieves in vitro pentachlorophenol detection with high selectivity, low detection limit, good reproducibility, and dual-mode sensing but also realizes in vivo monitoring of pentachlorophenol enriched in fish brain for up to 70 days with satisfactory reliability, unraveling its tempting potential for various in vivo application.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.