Jongseon Kim, Hyungjoon Kim, HyunGi Kim, Dongjun Lee, Sungroh Yoon
{"title":"A comprehensive survey of deep learning for time series forecasting: architectural diversity and open challenges","authors":"Jongseon Kim, Hyungjoon Kim, HyunGi Kim, Dongjun Lee, Sungroh Yoon","doi":"10.1007/s10462-025-11223-9","DOIUrl":null,"url":null,"abstract":"<div><p>Time series forecasting is a critical task that provides key information for decision-making across various fields, such as economic planning, supply chain management, and medical diagnosis. After the use of traditional statistical methodologies and machine learning in the past, various fundamental deep learning architectures such as MLPs, CNNs, RNNs, and GNNs have been developed and applied to solve time series forecasting problems. However, the structural limitations caused by the inductive biases of each deep learning architecture constrained their performance. Transformer models, which excel at handling long-term dependencies, have become significant architectural components for time series forecasting. However, recent research has shown that alternatives such as simple linear layers can outperform Transformers. These findings have opened up new possibilities for using diverse architectures, ranging from fundamental deep learning models to emerging architectures and hybrid approaches. In this context of exploration into various models, the architectural modeling of time series forecasting has now entered a renaissance. This survey not only provides a historical context for time series forecasting but also offers comprehensive and timely analysis of the movement toward architectural diversification. By comparing and re-examining various deep learning models, we uncover new perspectives and present the latest trends in time series forecasting, including the emergence of hybrid models, diffusion models, Mamba models, and foundation models. By focusing on the inherent characteristics of time series data, we also address open challenges that have gained attention in time series forecasting, such as channel dependency, distribution shift, causality, and feature extraction. This survey explores vital elements that can enhance forecasting performance through diverse approaches. These contributions help lower entry barriers for newcomers by providing a systematic understanding of the diverse research areas in time series forecasting (TSF), while offering seasoned researchers broader perspectives and new opportunities through in-depth exploration of TSF challenges.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 7","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11223-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11223-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Time series forecasting is a critical task that provides key information for decision-making across various fields, such as economic planning, supply chain management, and medical diagnosis. After the use of traditional statistical methodologies and machine learning in the past, various fundamental deep learning architectures such as MLPs, CNNs, RNNs, and GNNs have been developed and applied to solve time series forecasting problems. However, the structural limitations caused by the inductive biases of each deep learning architecture constrained their performance. Transformer models, which excel at handling long-term dependencies, have become significant architectural components for time series forecasting. However, recent research has shown that alternatives such as simple linear layers can outperform Transformers. These findings have opened up new possibilities for using diverse architectures, ranging from fundamental deep learning models to emerging architectures and hybrid approaches. In this context of exploration into various models, the architectural modeling of time series forecasting has now entered a renaissance. This survey not only provides a historical context for time series forecasting but also offers comprehensive and timely analysis of the movement toward architectural diversification. By comparing and re-examining various deep learning models, we uncover new perspectives and present the latest trends in time series forecasting, including the emergence of hybrid models, diffusion models, Mamba models, and foundation models. By focusing on the inherent characteristics of time series data, we also address open challenges that have gained attention in time series forecasting, such as channel dependency, distribution shift, causality, and feature extraction. This survey explores vital elements that can enhance forecasting performance through diverse approaches. These contributions help lower entry barriers for newcomers by providing a systematic understanding of the diverse research areas in time series forecasting (TSF), while offering seasoned researchers broader perspectives and new opportunities through in-depth exploration of TSF challenges.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.