{"title":"Cyber Attacks Prevention Toward Prosumer-Based EV Charging Stations: An Edge-Assisted Federated Prototype Knowledge Distillation Approach","authors":"Luyao Zou;Quang Hieu Vo;Kitae Kim;Huy Q. Le;Chu Myaet Thwal;Chaoning Zhang;Choong Seon Hong","doi":"10.1109/TNSM.2024.3517621","DOIUrl":null,"url":null,"abstract":"In this paper, cyber-attack prevention for the prosumer-based electric vehicle (EV) charging stations (EVCSs) is investigated, which covers two aspects: 1) cyber-attack detection on prosumers’ network traffic (NT) data, and 2) cyber-attack intervention. To establish an effective prevention mechanism, several challenges need to be tackled, for instance, the NT data per prosumer may be non-independent and identically distributed (non-IID), and the boundary between benign and malicious traffic becomes blurred. To this end, we propose an edge-assisted federated prototype knowledge distillation (E-FPKD) approach, where each client is deployed on a dedicated local edge server (DLES) and can report its availability for joining the federated learning (FL) process. Prior to the E-FPKD approach, to enhance accuracy, the Pearson Correlation Coefficient is adopted for feature selection. Regarding the proposed E-FPKD approach, we integrate the knowledge distillation and prototype aggregation technique into FL to deal with the non-IID challenge. To address the boundary issue, instead of directly calculating the distance between benign and malicious traffic, we consider maximizing the overall detection correctness of all prosumers (ODC), which can mitigate the computational cost compared with the former way. After detection, a rule-based method will be triggered at each DLES for cyber-attack intervention. Experimental analysis demonstrates that the proposed E-FPKD can achieve the largest ODC on NSL-KDD, UNSW-NB15, and IoTID20 datasets in both binary and multi-class classification, compared with baselines. For instance, the ODC for IoTID20 obtained via the proposed method is separately 0.3782% and 4.4471% greater than FedProto and FedAU in multi-class classification.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"22 2","pages":"1972-1999"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10803006/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, cyber-attack prevention for the prosumer-based electric vehicle (EV) charging stations (EVCSs) is investigated, which covers two aspects: 1) cyber-attack detection on prosumers’ network traffic (NT) data, and 2) cyber-attack intervention. To establish an effective prevention mechanism, several challenges need to be tackled, for instance, the NT data per prosumer may be non-independent and identically distributed (non-IID), and the boundary between benign and malicious traffic becomes blurred. To this end, we propose an edge-assisted federated prototype knowledge distillation (E-FPKD) approach, where each client is deployed on a dedicated local edge server (DLES) and can report its availability for joining the federated learning (FL) process. Prior to the E-FPKD approach, to enhance accuracy, the Pearson Correlation Coefficient is adopted for feature selection. Regarding the proposed E-FPKD approach, we integrate the knowledge distillation and prototype aggregation technique into FL to deal with the non-IID challenge. To address the boundary issue, instead of directly calculating the distance between benign and malicious traffic, we consider maximizing the overall detection correctness of all prosumers (ODC), which can mitigate the computational cost compared with the former way. After detection, a rule-based method will be triggered at each DLES for cyber-attack intervention. Experimental analysis demonstrates that the proposed E-FPKD can achieve the largest ODC on NSL-KDD, UNSW-NB15, and IoTID20 datasets in both binary and multi-class classification, compared with baselines. For instance, the ODC for IoTID20 obtained via the proposed method is separately 0.3782% and 4.4471% greater than FedProto and FedAU in multi-class classification.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.