{"title":"Auditable Homomorphic-Based Decentralized Collaborative AI With Attribute-Based Differential Privacy","authors":"Lo-Yao Yeh;Sheng-Po Tseng;Chia-Hsun Lu;Chih-Ya Shen","doi":"10.1109/TNSM.2025.3529774","DOIUrl":null,"url":null,"abstract":"In recent years, the notion of federated learning (FL) has led to the new paradigm of distributed artificial intelligence (AI) with privacy preservation. However, most current FL systems suffer from data privacy issues due to the requirement of a trusted third party. Although some previous works introduce differential privacy to protect the data, however, it may also significantly deteriorate the model performance. To address these issues, we propose a novel decentralized collaborative AI framework, named Auditable Homomorphic-based Decentralised Collaborative AI (AerisAI), to improve security with homomorphic encryption and fine-grained differential privacy. Our proposed AerisAI directly aggregates the encrypted parameters with a blockchain-based smart contract to get rid of the need of a trusted third party. We also propose a brand-new concept for eliminating the negative impacts of differential privacy for model performance. Moreover, the proposed AerisAI also provides the broadcast-aware group key management based on ciphertext-policy attribute-based encryption (CP-ABE) to achieve fine-grained access control based on different service-level agreements. We provide a formal theoretical analysis of the proposed AerisAI as well as the functionality comparison with the other baselines. We also conduct extensive experiments on real datasets to evaluate the proposed approach. The experimental results indicate that our proposed AerisAI significantly outperforms the other state-of-the-art baselines.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"22 2","pages":"989-1004"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10840345/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the notion of federated learning (FL) has led to the new paradigm of distributed artificial intelligence (AI) with privacy preservation. However, most current FL systems suffer from data privacy issues due to the requirement of a trusted third party. Although some previous works introduce differential privacy to protect the data, however, it may also significantly deteriorate the model performance. To address these issues, we propose a novel decentralized collaborative AI framework, named Auditable Homomorphic-based Decentralised Collaborative AI (AerisAI), to improve security with homomorphic encryption and fine-grained differential privacy. Our proposed AerisAI directly aggregates the encrypted parameters with a blockchain-based smart contract to get rid of the need of a trusted third party. We also propose a brand-new concept for eliminating the negative impacts of differential privacy for model performance. Moreover, the proposed AerisAI also provides the broadcast-aware group key management based on ciphertext-policy attribute-based encryption (CP-ABE) to achieve fine-grained access control based on different service-level agreements. We provide a formal theoretical analysis of the proposed AerisAI as well as the functionality comparison with the other baselines. We also conduct extensive experiments on real datasets to evaluate the proposed approach. The experimental results indicate that our proposed AerisAI significantly outperforms the other state-of-the-art baselines.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.