Interval Mean Estimation Under (ε,δ)-Local Differential Privacy

IF 4.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Junming Zhang;Jingru Wang;Shigong Long;Yanen Li;Lun Wang
{"title":"Interval Mean Estimation Under (ε,δ)-Local Differential Privacy","authors":"Junming Zhang;Jingru Wang;Shigong Long;Yanen Li;Lun Wang","doi":"10.1109/TNSM.2024.3490555","DOIUrl":null,"url":null,"abstract":"Local differential privacy (LDP) techniques obviate the need for trust in the data collector, as they provide robust privacy guarantees against untrusted data managers while simultaneously preserving the accuracy of statistical information derived from the privatized data. As a result, these methods have garnered considerable interest and research efforts. In particular, <inline-formula> <tex-math>$(\\varepsilon,\\delta)$ </tex-math></inline-formula>-LDP schemes have been utilized across a range of statistical tasks. Nonetheless, existing <inline-formula> <tex-math>$(\\varepsilon,\\delta)$ </tex-math></inline-formula>-LDP mechanisms for mean estimation suffer from challenges such as elevated estimation errors and diminished data utility. To address this problem, we propose two novel <inline-formula> <tex-math>$(\\varepsilon,\\delta)$ </tex-math></inline-formula>-LDP algorithms for mean estimation. Specifically, we design a one-dimensional piecewise mean estimation algorithm, which perturbs the input data into intervals, thereby reducing noise addition and enhancing both accuracy and efficiency. Building on this foundation, we extend our approach to multi-dimensional data, resulting in a multi-dimensional piecewise mean estimation algorithm. Furthermore, we conduct a theoretical analysis to derive both the variance and error bounds for the proposed algorithms. Extensive experiments conducted on real datasets demonstrate the high practicality of our algorithms for data statistical tasks, showing significant improvements in data utility.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"22 2","pages":"2074-2086"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10742109/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Local differential privacy (LDP) techniques obviate the need for trust in the data collector, as they provide robust privacy guarantees against untrusted data managers while simultaneously preserving the accuracy of statistical information derived from the privatized data. As a result, these methods have garnered considerable interest and research efforts. In particular, $(\varepsilon,\delta)$ -LDP schemes have been utilized across a range of statistical tasks. Nonetheless, existing $(\varepsilon,\delta)$ -LDP mechanisms for mean estimation suffer from challenges such as elevated estimation errors and diminished data utility. To address this problem, we propose two novel $(\varepsilon,\delta)$ -LDP algorithms for mean estimation. Specifically, we design a one-dimensional piecewise mean estimation algorithm, which perturbs the input data into intervals, thereby reducing noise addition and enhancing both accuracy and efficiency. Building on this foundation, we extend our approach to multi-dimensional data, resulting in a multi-dimensional piecewise mean estimation algorithm. Furthermore, we conduct a theoretical analysis to derive both the variance and error bounds for the proposed algorithms. Extensive experiments conducted on real datasets demonstrate the high practicality of our algorithms for data statistical tasks, showing significant improvements in data utility.
(ε,δ)-局部微分隐私下的区间均值估计
本地差分隐私(LDP)技术无需信任数据收集者,因为它们针对不受信任的数据管理者提供了稳健的隐私保证,同时还能保持从私有化数据中得出的统计信息的准确性。因此,这些方法引起了人们的极大兴趣,并得到了广泛的研究。特别是,$(\varepsilon,\delta)$ -LDP方案已在一系列统计任务中得到应用。然而,现有的用于均值估计的$(\varepsilon,\delta)$ -LDP机制面临着估计误差增大和数据效用降低等挑战。为了解决这个问题,我们提出了两种新颖的用于均值估计的 $(\varepsilon,\delta)$ -LDP 算法。具体来说,我们设计了一种一维片断均值估计算法,它将输入数据扰动成区间,从而减少了噪声的增加,提高了精度和效率。在此基础上,我们将方法扩展到多维数据,从而设计出一种多维分片均值估计算法。此外,我们还进行了理论分析,得出了所提算法的方差和误差范围。在真实数据集上进行的大量实验证明了我们的算法在数据统计任务中的高度实用性,并显示出数据实用性的显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Network and Service Management
IEEE Transactions on Network and Service Management Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
15.10%
发文量
325
期刊介绍: IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信