{"title":"VPN-Encrypted Network Traffic Classification Using a Time-Series Approach","authors":"Jaidip Kotak;Idan Yankelev;Idan Bibi;Yuval Elovici;Asaf Shabtai","doi":"10.1109/TNSM.2025.3543903","DOIUrl":null,"url":null,"abstract":"Network traffic classification provides value to organizations and Internet service providers (ISPs). The identification of applications or services from network traffic enables organizations to better manage their business, and ISPs to offer services to their users. Given the vast quantity of traffic flowing in and out of organizations, it is impractical to write manual signatures for traffic identification. The effectiveness of machine learning (ML) in the identification of applications or services from network traffic has been demonstrated. Even when network traffic is encrypted, ML algorithms achieve high accuracy in the task of traffic identification based on statistical information and the packets’ headers and payloads. However, existing approaches were shown to be ineffective for VPN-encrypted network traffic. In this study, we propose a novel time-series based approach for the identification of traffic/source applications on VPN-encrypted traffic. We also demonstrate the broad applicability of our proposed approach by evaluating its effectiveness on non-VPN traffic that is encrypted, and on IoT traffic.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"22 2","pages":"2225-2242"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10896753/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Network traffic classification provides value to organizations and Internet service providers (ISPs). The identification of applications or services from network traffic enables organizations to better manage their business, and ISPs to offer services to their users. Given the vast quantity of traffic flowing in and out of organizations, it is impractical to write manual signatures for traffic identification. The effectiveness of machine learning (ML) in the identification of applications or services from network traffic has been demonstrated. Even when network traffic is encrypted, ML algorithms achieve high accuracy in the task of traffic identification based on statistical information and the packets’ headers and payloads. However, existing approaches were shown to be ineffective for VPN-encrypted network traffic. In this study, we propose a novel time-series based approach for the identification of traffic/source applications on VPN-encrypted traffic. We also demonstrate the broad applicability of our proposed approach by evaluating its effectiveness on non-VPN traffic that is encrypted, and on IoT traffic.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.