Michiel E. Hochstenbach , Christian Mehl , Bor Plestenjak
{"title":"Numerical methods for eigenvalues of singular polynomial eigenvalue problems","authors":"Michiel E. Hochstenbach , Christian Mehl , Bor Plestenjak","doi":"10.1016/j.laa.2025.04.002","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, three numerical methods for the computation of eigenvalues of singular matrix pencils, based on a rank-completing perturbation, a rank-projection, or an augmentation have been developed. We show that all three approaches can be generalized to treat singular polynomial eigenvalue problems. The common denominator of all three approaches is a transformation of a singular into a regular matrix polynomial whose eigenvalues are a disjoint union of the eigenvalues of the singular polynomial, called true eigenvalues, and additional fake eigenvalues. The true eigenvalues can then be separated from the fake eigenvalues using information on the corresponding left and right eigenvectors. We illustrate the approaches on several interesting applications, including bivariate polynomial systems and ZGV points.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"719 ","pages":"Pages 1-33"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525001521","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, three numerical methods for the computation of eigenvalues of singular matrix pencils, based on a rank-completing perturbation, a rank-projection, or an augmentation have been developed. We show that all three approaches can be generalized to treat singular polynomial eigenvalue problems. The common denominator of all three approaches is a transformation of a singular into a regular matrix polynomial whose eigenvalues are a disjoint union of the eigenvalues of the singular polynomial, called true eigenvalues, and additional fake eigenvalues. The true eigenvalues can then be separated from the fake eigenvalues using information on the corresponding left and right eigenvectors. We illustrate the approaches on several interesting applications, including bivariate polynomial systems and ZGV points.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.