Ti-Decorated SiC2 as a High-Performance Anode Material for Li-ion Batteries: A DFT-D2 Approach

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Samira Nikmanesh, Seshasai Srinivasan, Rosa Safaiee
{"title":"Ti-Decorated SiC2 as a High-Performance Anode Material for Li-ion Batteries: A DFT-D2 Approach","authors":"Samira Nikmanesh, Seshasai Srinivasan, Rosa Safaiee","doi":"10.1016/j.mtphys.2025.101734","DOIUrl":null,"url":null,"abstract":"This study employs dispersion-corrected DFT-D2 calculations to investigate Li adsorption on pristine and Ti-decorated SiC<sub>2</sub>, evaluating their potential as anode materials for Li-ion batteries. Key analyses, including adsorption energy, density of states (DOS), Bader charge, diffusion barrier, and open-circuit voltage (OCV), reveal that the incorporation of titanium (Ti) into SiC<sub>2</sub> significantly enhances the electrochemical performance, stability, and lithium atom diffusion characteristics of the material. Ti increases the adsorption energy, Eads, from -1.422 eV for SiC<sub>2</sub> to -1.641 eV for Ti-decorated SiC<sub>2</sub>, strengthening the bond between lithium ions and the substrate. This stronger interaction improves capacity retention and cycling stability by reducing lithium desorption during cycling. While this increase in adsorption energy may slightly impede lithium diffusion, it contributes to greater structural stability and durability under high-rate charging and discharging conditions. Additionally, OCV is enhanced from 0.340 V in SiC<sub>2</sub> to 0.392 V in Ti-decorated SiC<sub>2</sub>, improving the overall energy output. The lattice constants exhibit a minimal change of only 0.21%, indicating that lithium intercalation and deintercalation during battery charge and discharge cycles have an insignificant impact on volume variation. With a capacity of 965.25 mAh/g, Ti-decorated SiC<sub>2</sub> achieves a more favorable balance of stability, rate capability, and energy efficiency compared to undoped SiC<sub>2</sub>, making it a promising material for practical, long-term applications in lithium-ion batteries.","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"37 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtphys.2025.101734","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs dispersion-corrected DFT-D2 calculations to investigate Li adsorption on pristine and Ti-decorated SiC2, evaluating their potential as anode materials for Li-ion batteries. Key analyses, including adsorption energy, density of states (DOS), Bader charge, diffusion barrier, and open-circuit voltage (OCV), reveal that the incorporation of titanium (Ti) into SiC2 significantly enhances the electrochemical performance, stability, and lithium atom diffusion characteristics of the material. Ti increases the adsorption energy, Eads, from -1.422 eV for SiC2 to -1.641 eV for Ti-decorated SiC2, strengthening the bond between lithium ions and the substrate. This stronger interaction improves capacity retention and cycling stability by reducing lithium desorption during cycling. While this increase in adsorption energy may slightly impede lithium diffusion, it contributes to greater structural stability and durability under high-rate charging and discharging conditions. Additionally, OCV is enhanced from 0.340 V in SiC2 to 0.392 V in Ti-decorated SiC2, improving the overall energy output. The lattice constants exhibit a minimal change of only 0.21%, indicating that lithium intercalation and deintercalation during battery charge and discharge cycles have an insignificant impact on volume variation. With a capacity of 965.25 mAh/g, Ti-decorated SiC2 achieves a more favorable balance of stability, rate capability, and energy efficiency compared to undoped SiC2, making it a promising material for practical, long-term applications in lithium-ion batteries.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信