AHerfReLU: A Novel Adaptive Activation Function Enhancing Deep Neural Network Performance

IF 1.7 4区 工程技术 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Complexity Pub Date : 2025-04-21 DOI:10.1155/cplx/8233876
Abaid Ullah, Muhammad Imran, Muhammad Abdul Basit, Madeeha Tahir, Jihad Younis
{"title":"AHerfReLU: A Novel Adaptive Activation Function Enhancing Deep Neural Network Performance","authors":"Abaid Ullah,&nbsp;Muhammad Imran,&nbsp;Muhammad Abdul Basit,&nbsp;Madeeha Tahir,&nbsp;Jihad Younis","doi":"10.1155/cplx/8233876","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In deep learning, the choice of activation function plays a vital role in enhancing model performance. We propose AHerfReLU, a novel activation function that combines the rectified linear unit (ReLU) function with the error function (erf), complemented by a regularization term 1/(1 + <i>x</i><sup>2</sup>), ensuring smooth gradients even for negative inputs. The function is zero centered, bounded below, and nonmonotonic, offering significant advantages over traditional activation functions like ReLU. We compare AHerfReLU with 10 adaptive activation functions and state-of-the-art activation functions, including ReLU, Swish, and Mish. Experimental results show that replacing ReLU with AHerfReLU leads to 3.18% improvement in Top-1 accuracy on the LeNet network for the CIFAR100 dataset, 0.63% improvement on CIFAR10%, and 1.3% improvement in mean average precision (mAP) on the SSD300 model in the Pascal VOC dataset. Our results demonstrate that AHerfReLU enhances model performance, offering improved accuracy, loss reduction, and convergence stability. The function outperforms existing activation functions, providing a promising alternative for deep learning tasks.</p>\n </div>","PeriodicalId":50653,"journal":{"name":"Complexity","volume":"2025 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/cplx/8233876","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complexity","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/cplx/8233876","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In deep learning, the choice of activation function plays a vital role in enhancing model performance. We propose AHerfReLU, a novel activation function that combines the rectified linear unit (ReLU) function with the error function (erf), complemented by a regularization term 1/(1 + x2), ensuring smooth gradients even for negative inputs. The function is zero centered, bounded below, and nonmonotonic, offering significant advantages over traditional activation functions like ReLU. We compare AHerfReLU with 10 adaptive activation functions and state-of-the-art activation functions, including ReLU, Swish, and Mish. Experimental results show that replacing ReLU with AHerfReLU leads to 3.18% improvement in Top-1 accuracy on the LeNet network for the CIFAR100 dataset, 0.63% improvement on CIFAR10%, and 1.3% improvement in mean average precision (mAP) on the SSD300 model in the Pascal VOC dataset. Our results demonstrate that AHerfReLU enhances model performance, offering improved accuracy, loss reduction, and convergence stability. The function outperforms existing activation functions, providing a promising alternative for deep learning tasks.

Abstract Image

AHerfReLU:增强深度神经网络性能的新型自适应激活函数
在深度学习中,激活函数的选择对提高模型性能起着至关重要的作用。我们提出的 AHerfReLU 是一种新型激活函数,它将整流线性单元(ReLU)函数与误差函数(erf)相结合,并辅以正则化项 1/(1+x2),即使在负输入的情况下也能确保平滑的梯度。与 ReLU 等传统激活函数相比,该函数具有零中心、下限值和非单调性等显著优势。我们将 AHerfReLU 与 10 个自适应激活函数和最先进的激活函数(包括 ReLU、Swish 和 Mish)进行了比较。实验结果表明,用 AHerfReLU 替代 ReLU 后,LeNet 网络在 CIFAR100 数据集上的 Top-1 精度提高了 3.18%,在 CIFAR10% 数据集上提高了 0.63%,在 Pascal VOC 数据集上的 SSD300 模型的平均精度 (mAP) 提高了 1.3%。我们的研究结果表明,AHerfReLU 增强了模型性能,提高了精度、损失减少率和收敛稳定性。该函数的性能优于现有的激活函数,为深度学习任务提供了一种有前途的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Complexity
Complexity 综合性期刊-数学跨学科应用
CiteScore
5.80
自引率
4.30%
发文量
595
审稿时长
>12 weeks
期刊介绍: Complexity is a cross-disciplinary journal focusing on the rapidly expanding science of complex adaptive systems. The purpose of the journal is to advance the science of complexity. Articles may deal with such methodological themes as chaos, genetic algorithms, cellular automata, neural networks, and evolutionary game theory. Papers treating applications in any area of natural science or human endeavor are welcome, and especially encouraged are papers integrating conceptual themes and applications that cross traditional disciplinary boundaries. Complexity is not meant to serve as a forum for speculation and vague analogies between words like “chaos,” “self-organization,” and “emergence” that are often used in completely different ways in science and in daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信