Natural language processing in the patent domain: a survey

IF 10.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lekang Jiang, Stephan M. Goetz
{"title":"Natural language processing in the patent domain: a survey","authors":"Lekang Jiang,&nbsp;Stephan M. Goetz","doi":"10.1007/s10462-025-11168-z","DOIUrl":null,"url":null,"abstract":"<div><p>Patents, which encapsulate crucial technical and legal information in text form and referenced drawings, present a rich domain for natural language processing (NLP). As NLP technologies evolve, large language models (LLMs) have demonstrated outstanding capabilities in general text processing and generation tasks. However, the application of LLMs in the patent domain remains under-explored and under-developed due to the complexity of patents, particularly their language and legal framework. Understanding the unique characteristics of patent documents and related research in the patent domain becomes essential for researchers to apply these tools effectively. Therefore, this paper aims to equip NLP researchers with the essential knowledge to navigate this complex domain efficiently. We introduce the relevant fundamental aspects of patents to provide solid background information. In addition, we systematically break down the structural and linguistic characteristics unique to patents and map out how NLP can be leveraged for patent analysis and generation. Moreover, we demonstrate the spectrum of text-based and multimodal patent-related tasks, including nine patent analysis and four patent generation tasks.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 7","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11168-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11168-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Patents, which encapsulate crucial technical and legal information in text form and referenced drawings, present a rich domain for natural language processing (NLP). As NLP technologies evolve, large language models (LLMs) have demonstrated outstanding capabilities in general text processing and generation tasks. However, the application of LLMs in the patent domain remains under-explored and under-developed due to the complexity of patents, particularly their language and legal framework. Understanding the unique characteristics of patent documents and related research in the patent domain becomes essential for researchers to apply these tools effectively. Therefore, this paper aims to equip NLP researchers with the essential knowledge to navigate this complex domain efficiently. We introduce the relevant fundamental aspects of patents to provide solid background information. In addition, we systematically break down the structural and linguistic characteristics unique to patents and map out how NLP can be leveraged for patent analysis and generation. Moreover, we demonstrate the spectrum of text-based and multimodal patent-related tasks, including nine patent analysis and four patent generation tasks.

专利领域的自然语言处理:综述
专利以文本形式和参考图纸封装了关键的技术和法律信息,为自然语言处理(NLP)提供了丰富的领域。随着NLP技术的发展,大型语言模型(llm)在一般文本处理和生成任务中表现出了出色的能力。然而,由于专利的复杂性,特别是其语言和法律框架的复杂性,法学硕士在专利领域的应用仍未得到充分的探索和开发。了解专利文献和专利领域相关研究的独特特征对于研究人员有效地应用这些工具至关重要。因此,本文旨在为NLP研究人员提供必要的知识,以有效地驾驭这一复杂的领域。我们介绍专利的相关基本方面,以提供坚实的背景信息。此外,我们系统地分解了专利独特的结构和语言特征,并绘制了如何利用NLP进行专利分析和生成。此外,我们展示了基于文本和多模态专利相关任务的频谱,包括9个专利分析和4个专利生成任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信