Achieving Ultra‐Low Contact Resistance via Copper‐Intercalated Bilayer MoS2

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Huan Wang, Xiaojie Liu, Hui Wang, Yin Wang, Haitao Yin
{"title":"Achieving Ultra‐Low Contact Resistance via Copper‐Intercalated Bilayer MoS2","authors":"Huan Wang, Xiaojie Liu, Hui Wang, Yin Wang, Haitao Yin","doi":"10.1002/aelm.202500100","DOIUrl":null,"url":null,"abstract":"The high contact resistance between MoS<jats:sub>2</jats:sub> and metals hinders its potential as an ideal solution for overcoming the short‐channel effect in silicon‐based FETs at sub‐3 nm scales. A MoS<jats:sub>2</jats:sub>‐based transistor, featuring bilayer MoS<jats:sub>2</jats:sub> connected to Cu‐intercalated bilayer MoS<jats:sub>2</jats:sub> electrodes is theoretically designed. At 0.6 V, contact resistance is 16.7 Ω µm (zigzag) and 30.0 Ω µm (armchair), nearing or even surpassing the 30 Ω µm quantum limit for single‐layer materials. This low resistance is attributed to the elimination of the tunneling barrier and the creation of ohmic contacts. Additionally, the small contact potential difference enables lower operating voltages. The intercalation design offers a novel approach to achieving low contact resistance in two‐dimentional electronic devices.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"4 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202500100","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The high contact resistance between MoS2 and metals hinders its potential as an ideal solution for overcoming the short‐channel effect in silicon‐based FETs at sub‐3 nm scales. A MoS2‐based transistor, featuring bilayer MoS2 connected to Cu‐intercalated bilayer MoS2 electrodes is theoretically designed. At 0.6 V, contact resistance is 16.7 Ω µm (zigzag) and 30.0 Ω µm (armchair), nearing or even surpassing the 30 Ω µm quantum limit for single‐layer materials. This low resistance is attributed to the elimination of the tunneling barrier and the creation of ohmic contacts. Additionally, the small contact potential difference enables lower operating voltages. The intercalation design offers a novel approach to achieving low contact resistance in two‐dimentional electronic devices.

Abstract Image

通过铜嵌入双层MoS2实现超低接触电阻
MoS2与金属之间的高接触电阻阻碍了其作为克服亚3nm尺度硅基场效应管短沟道效应的理想解决方案的潜力。从理论上设计了一种基于MoS2的晶体管,其特点是双层MoS2连接到Cu插层双层MoS2电极。在0.6 V时,接触电阻为16.7 Ωµm(锯齿形)和30.0 Ωµm(扶手形),接近甚至超过单层材料的30 Ωµm量子极限。这种低电阻是由于消除了隧道势垒和产生了欧姆接触。此外,小的接触电位差可以降低工作电压。这种嵌入设计为实现二维电子器件的低接触电阻提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信