Multiangle Sonar Imaging for 3-D Reconstruction of Underwater Objects in Shadowless Environments

IF 3.8 2区 工程技术 Q1 ENGINEERING, CIVIL
Zhijie Tang;Yang Li;Chi Wang
{"title":"Multiangle Sonar Imaging for 3-D Reconstruction of Underwater Objects in Shadowless Environments","authors":"Zhijie Tang;Yang Li;Chi Wang","doi":"10.1109/JOE.2025.3535563","DOIUrl":null,"url":null,"abstract":"In the realm of underwater detection technologies, reconstructing the three-dimensional structure of underwater objects is crucial for applications such as underwater target tracking, target locking, and navigational guidance. As a primary tool for underwater detection, acoustical imaging faces significant challenges in recovering the three-dimensional structure of objects from two-dimensional images. Current 3-D reconstruction methods mainly focus on reconstructing objects at the riverbed, overlooking the reconstruction of objects in the water in the absence of shadows. This study introduces a multiangle shape and height recovery method for such specific situations. By fixing the sonar detection angle and utilizing ViewPoint software to measure the contours of objects at different depths, a superimposition technique for two-dimensional sonar images was developed to achieve three-dimensional reconstruction of shadowless sonar image data. The proposed method is specifically designed for scenarios with diffuse echoes, where the sound waves scatter from rough surfaces rather than reflect specularly from smooth surfaces. This limitation ensures the method's applicability to objects lacking strong mirror-like reflections. This technique has been validated on three different categories of targets, with the reconstructed 3-D models accurately compared to the actual size and shape of the targets, demonstrating the method's effectiveness and providing a theoretical and methodological foundation for the 3-D reconstruction of underwater sonar targets.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"50 2","pages":"1344-1355"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10937240/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

In the realm of underwater detection technologies, reconstructing the three-dimensional structure of underwater objects is crucial for applications such as underwater target tracking, target locking, and navigational guidance. As a primary tool for underwater detection, acoustical imaging faces significant challenges in recovering the three-dimensional structure of objects from two-dimensional images. Current 3-D reconstruction methods mainly focus on reconstructing objects at the riverbed, overlooking the reconstruction of objects in the water in the absence of shadows. This study introduces a multiangle shape and height recovery method for such specific situations. By fixing the sonar detection angle and utilizing ViewPoint software to measure the contours of objects at different depths, a superimposition technique for two-dimensional sonar images was developed to achieve three-dimensional reconstruction of shadowless sonar image data. The proposed method is specifically designed for scenarios with diffuse echoes, where the sound waves scatter from rough surfaces rather than reflect specularly from smooth surfaces. This limitation ensures the method's applicability to objects lacking strong mirror-like reflections. This technique has been validated on three different categories of targets, with the reconstructed 3-D models accurately compared to the actual size and shape of the targets, demonstrating the method's effectiveness and providing a theoretical and methodological foundation for the 3-D reconstruction of underwater sonar targets.
多角度声纳成像在无影环境下水下目标的三维重建
在水下探测技术领域,水下目标的三维结构重构是水下目标跟踪、目标锁定和导航制导等应用的关键。作为水下探测的主要工具,声学成像在从二维图像中恢复物体的三维结构方面面临着重大挑战。目前的三维重建方法主要集中在河床上的物体重建,忽略了在没有阴影的情况下对水中物体的重建。本研究针对这种特殊情况,提出了一种多角度的形状和高度恢复方法。通过固定声纳探测角度,利用ViewPoint软件测量不同深度物体的轮廓,开发了二维声纳图像的叠加技术,实现了无影声纳图像数据的三维重建。所提出的方法是专门为漫反射回波设计的,其中声波从粗糙表面散射而不是从光滑表面反射。这一限制确保了该方法适用于缺乏强镜像反射的对象。该技术在三种不同类型的目标上进行了验证,重建的三维模型与目标的实际尺寸和形状进行了精确的对比,验证了该方法的有效性,为水下声纳目标的三维重建提供了理论和方法基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Oceanic Engineering
IEEE Journal of Oceanic Engineering 工程技术-工程:大洋
CiteScore
9.60
自引率
12.20%
发文量
86
审稿时长
12 months
期刊介绍: The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信