Xiaodong Cui;Zhuofan He;Yangtao Xue;Peican Zhu;Jing Han;Xuelong Li
{"title":"Few-Shot Underwater Acoustic Target Recognition Using Domain Adaptation and Knowledge Distillation","authors":"Xiaodong Cui;Zhuofan He;Yangtao Xue;Peican Zhu;Jing Han;Xuelong Li","doi":"10.1109/JOE.2025.3532036","DOIUrl":null,"url":null,"abstract":"The complex dynamics of the marine environment pose substantial challenges for underwater acoustic target recognition (UATR) systems, especially when there are limited training samples. However, existing image-based few-shot learning methods might not be applicable, mainly because they fail to capture the temporal and spectral features from acoustic targets and lack the competent domain adaptation ability due to the inefficient usage of base samples. In this article, we develop a novel Domain Adaptation-based Attentional Time–Frequency few-shot recognition method (DAATF) for underwater acoustic targets. The DAATF explicitly utilizes a self-attention-based feature extractor to capture the time–frequency structural dependencies and constructs an autoencoder-based domain adapter to improve the cross-domain knowledge transfer through reusing the base dataset. In addition, a knowledge distillation module is designed to enable the model to reserve the general feature extraction ability of the pretrained network to avoid overfitting. Extensive experiments are conducted to assess prediction accuracy, noise robustness, and cross-domain adaptation. The obtained results validate that the DAATF can achieve outstanding performance, demonstrating its great potential for practical UATR applications. Furthermore, we provide free and open access to the DanShip data set.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"50 2","pages":"637-653"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10916524/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The complex dynamics of the marine environment pose substantial challenges for underwater acoustic target recognition (UATR) systems, especially when there are limited training samples. However, existing image-based few-shot learning methods might not be applicable, mainly because they fail to capture the temporal and spectral features from acoustic targets and lack the competent domain adaptation ability due to the inefficient usage of base samples. In this article, we develop a novel Domain Adaptation-based Attentional Time–Frequency few-shot recognition method (DAATF) for underwater acoustic targets. The DAATF explicitly utilizes a self-attention-based feature extractor to capture the time–frequency structural dependencies and constructs an autoencoder-based domain adapter to improve the cross-domain knowledge transfer through reusing the base dataset. In addition, a knowledge distillation module is designed to enable the model to reserve the general feature extraction ability of the pretrained network to avoid overfitting. Extensive experiments are conducted to assess prediction accuracy, noise robustness, and cross-domain adaptation. The obtained results validate that the DAATF can achieve outstanding performance, demonstrating its great potential for practical UATR applications. Furthermore, we provide free and open access to the DanShip data set.
期刊介绍:
The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.