{"title":"Cross-Domain Underwater Sound Source Localization Algorithm Based on Binaural Matrix and Mutual Information Constraint Loss","authors":"Ruwei Li;Man Li;Qiuyan Li;Jiangqiao Li","doi":"10.1109/JOE.2024.3516204","DOIUrl":null,"url":null,"abstract":"The accuracy of existing underwater sound source localization algorithms is unsatisfactory, and most of them cannot achieve cross-domain localization. To solve these problems, a cross-domain underwater sound source localization algorithm based on a binaural matrix and mutual information constraint loss is proposed. In this algorithm, a new binaural matrix feature is first extracted based on binaural cues, which is less susceptible to environmental interference and can obtain reliable direction information from received signals. Then, a constrained loss based on mutual information is designed to constrain the proposed neural network to accurately learn the shared representations of different domains. This ensures that the high-dimensional representations used for localization have more explicit orientation directionality. Finally, a cross-domain underwater sound source localization network is constructed to achieve accurate cross-domain localization. Experimental results indicate that the algorithm proposed in this study has a higher localization accuracy than comparative algorithms, both in the same domain and in different domains.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"50 2","pages":"1419-1428"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10918686/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The accuracy of existing underwater sound source localization algorithms is unsatisfactory, and most of them cannot achieve cross-domain localization. To solve these problems, a cross-domain underwater sound source localization algorithm based on a binaural matrix and mutual information constraint loss is proposed. In this algorithm, a new binaural matrix feature is first extracted based on binaural cues, which is less susceptible to environmental interference and can obtain reliable direction information from received signals. Then, a constrained loss based on mutual information is designed to constrain the proposed neural network to accurately learn the shared representations of different domains. This ensures that the high-dimensional representations used for localization have more explicit orientation directionality. Finally, a cross-domain underwater sound source localization network is constructed to achieve accurate cross-domain localization. Experimental results indicate that the algorithm proposed in this study has a higher localization accuracy than comparative algorithms, both in the same domain and in different domains.
期刊介绍:
The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.