Mechanistic and metabolic exploration of neohesperidin against lung cancer cell lines through ROS-mediated mitochondrial apoptosis: An in-silico and in-vitro approach
{"title":"Mechanistic and metabolic exploration of neohesperidin against lung cancer cell lines through ROS-mediated mitochondrial apoptosis: An in-silico and in-vitro approach","authors":"Ruchi Pandey , Khushboo Choudhary , Surendra Rajit Prasad , Pranesh Kumar , Priya Bisht , Dande Aishwarya , Pallaprolu Nikhil , Sachindra Kumar , Ramalingam Peraman , Nitesh Kumar","doi":"10.1016/j.taap.2025.117350","DOIUrl":null,"url":null,"abstract":"<div><div>Lung cancer is a significant contributor to global mortality rates in the human population. However, the results of current treatment options are still unsatisfactory. Thus, the study explores low-toxic natural substances that release caspases and trigger apoptosis. Neohesperidin (NHP), a flavonoid, has anticancer efficacy although its molecular mechanism is unknown. In the current work, through <em>in-silico</em> and in-vitro screening, we discovered that NHP significantly reduces the expression of x-linked inhibitor of apoptosis protein (xIAP) and ATP on its administration, leading to apoptosis in human and mice lung (A549 and LLC-1) cancerous cells. Furthermore, NHP promoted the production of second-mitochondria-derived-activator-of-caspase (SMAC) and triggers mitochondrial dysfunction which also promotes apoptosis (51.1 %) as well as necrosis (25.8 %). This mechanism is regulated by mitochondria-mediated (Bax and Bcl-2) caspases-dependent apoptotic and ROS mediated pathway which increases SMAC expression by 21.2 % along with lowering the xIAP level (by 36.5 %). Moreover, network pharmacology was utilized to delineate the interactions of the compounds within biological networks, emphasizing their potential to target multiple pathways. In addition, we investigated the alterations in metabolites within A549 cells caused by NHP using liquid-chromatography-high-resolution-mass-spectrometry (LC-HRMS)-based metabolomics. The results revealed perturbations in metabolomes that are involved in multiple pathways. Therefore, this study indicates that NHP is a potential therapeutic agent to mitigate and control the proliferation of lung cancer and also regulates the energy metabolism.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"499 ","pages":"Article 117350"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X25001267","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Lung cancer is a significant contributor to global mortality rates in the human population. However, the results of current treatment options are still unsatisfactory. Thus, the study explores low-toxic natural substances that release caspases and trigger apoptosis. Neohesperidin (NHP), a flavonoid, has anticancer efficacy although its molecular mechanism is unknown. In the current work, through in-silico and in-vitro screening, we discovered that NHP significantly reduces the expression of x-linked inhibitor of apoptosis protein (xIAP) and ATP on its administration, leading to apoptosis in human and mice lung (A549 and LLC-1) cancerous cells. Furthermore, NHP promoted the production of second-mitochondria-derived-activator-of-caspase (SMAC) and triggers mitochondrial dysfunction which also promotes apoptosis (51.1 %) as well as necrosis (25.8 %). This mechanism is regulated by mitochondria-mediated (Bax and Bcl-2) caspases-dependent apoptotic and ROS mediated pathway which increases SMAC expression by 21.2 % along with lowering the xIAP level (by 36.5 %). Moreover, network pharmacology was utilized to delineate the interactions of the compounds within biological networks, emphasizing their potential to target multiple pathways. In addition, we investigated the alterations in metabolites within A549 cells caused by NHP using liquid-chromatography-high-resolution-mass-spectrometry (LC-HRMS)-based metabolomics. The results revealed perturbations in metabolomes that are involved in multiple pathways. Therefore, this study indicates that NHP is a potential therapeutic agent to mitigate and control the proliferation of lung cancer and also regulates the energy metabolism.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.