{"title":"From Concept to Field Trials: Design, Analysis, and Evaluation of a Novel Quadruped Robot With Deformable Wheel–Foot Structure","authors":"Zhongjin Ju;Ke Wei;Yundou Xu","doi":"10.1109/TRO.2025.3562449","DOIUrl":null,"url":null,"abstract":"This study introduces a novel quadruped robot, the TerraAdapt, furnished with an innovative deformable wheel–foot integrated structure. This unique design grants the robot the flexibility to alternate between wheeled and footed modes of locomotion, making it efficient in traversing diverse terrains, from smooth indoor floors to challenging outdoor landscapes laden with obstacles. The study delineates an in-depth design and analysis of the deformable wheel and its integrated wheel–foot structure using screw theory. We engineer a 2 R: Rotational, P: Prismatic (RRR-RP) wheel–foot mode-switching mechanism by modifying a 2RRR spatial six-bar mechanism with an additional RP branch. This mechanism aids in seamless transitioning between different movement modes. Moreover, a 2RRR parallel structure is employed to construct the footed mode structure.To substantiate the viability and efficacy of the proposed design, we carry out extensive motion simulations and construct an experimental prototype for field testing. The field trials reveal the robot's adeptness in adapting to varied terrains, highlighting the possible advantages of incorporating the proposed deformable wheel into micro mobile robot designs.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"3143-3161"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10970095/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a novel quadruped robot, the TerraAdapt, furnished with an innovative deformable wheel–foot integrated structure. This unique design grants the robot the flexibility to alternate between wheeled and footed modes of locomotion, making it efficient in traversing diverse terrains, from smooth indoor floors to challenging outdoor landscapes laden with obstacles. The study delineates an in-depth design and analysis of the deformable wheel and its integrated wheel–foot structure using screw theory. We engineer a 2 R: Rotational, P: Prismatic (RRR-RP) wheel–foot mode-switching mechanism by modifying a 2RRR spatial six-bar mechanism with an additional RP branch. This mechanism aids in seamless transitioning between different movement modes. Moreover, a 2RRR parallel structure is employed to construct the footed mode structure.To substantiate the viability and efficacy of the proposed design, we carry out extensive motion simulations and construct an experimental prototype for field testing. The field trials reveal the robot's adeptness in adapting to varied terrains, highlighting the possible advantages of incorporating the proposed deformable wheel into micro mobile robot designs.
期刊介绍:
The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles.
Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.