{"title":"High-Order Regularization Dealing With ILL-Conditioned Robot Localization Problems","authors":"Xinghua Liu;Ming Cao","doi":"10.1109/TRO.2025.3562487","DOIUrl":null,"url":null,"abstract":"In this work, we propose a high-order regularization method to solve the ill-conditioned problems in robot localization. Numerical solutions to robot localization problems are often unstable when the problems are ill-conditioned. A typical way to solve ill-conditioned problems is regularization, and a classical regularization method is the Tikhonov regularization. It is shown that the Tikhonov regularization is a low-order case of our method. We find that the proposed method is superior to the Tikhonov regularization in approximating some ill-conditioned inverse problems, such as some basic robot localization problems. The proposed method overcomes the oversmoothing problem in the Tikhonov regularization as it uses more than one term in the approximation of the matrix inverse, and an explanation for the oversmoothing of the Tikhonov regularization is given. Moreover, one a priori criterion, which improves the numerical stability of the ill-conditioned problem, is proposed to obtain an optimal regularization matrix. As most of the regularization solutions are biased, we also provide two bias-correction techniques for the proposed high-order regularization. The simulation and experimental results using an ultra-wideband sensor network in a 3-D environment are discussed, demonstrating the performance of the proposed method.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"3539-3555"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10969984/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we propose a high-order regularization method to solve the ill-conditioned problems in robot localization. Numerical solutions to robot localization problems are often unstable when the problems are ill-conditioned. A typical way to solve ill-conditioned problems is regularization, and a classical regularization method is the Tikhonov regularization. It is shown that the Tikhonov regularization is a low-order case of our method. We find that the proposed method is superior to the Tikhonov regularization in approximating some ill-conditioned inverse problems, such as some basic robot localization problems. The proposed method overcomes the oversmoothing problem in the Tikhonov regularization as it uses more than one term in the approximation of the matrix inverse, and an explanation for the oversmoothing of the Tikhonov regularization is given. Moreover, one a priori criterion, which improves the numerical stability of the ill-conditioned problem, is proposed to obtain an optimal regularization matrix. As most of the regularization solutions are biased, we also provide two bias-correction techniques for the proposed high-order regularization. The simulation and experimental results using an ultra-wideband sensor network in a 3-D environment are discussed, demonstrating the performance of the proposed method.
期刊介绍:
The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles.
Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.