Energy-based open set domain adaptation with dynamic weighted synergistic mechanism

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zihao Fu, Dong Liu, Shengsheng Wang, Hao Chai
{"title":"Energy-based open set domain adaptation with dynamic weighted synergistic mechanism","authors":"Zihao Fu, Dong Liu, Shengsheng Wang, Hao Chai","doi":"10.1007/s40747-025-01857-1","DOIUrl":null,"url":null,"abstract":"<p>Open Set Domain Adaptation (OSDA) aims to minimize domain variation while distinguishing between known and unknown samples. However, existing OSDA methods, which rely on deep neural network classifiers, often lead to overconfident predictions and fail to clearly demarcate known from unknown samples. To address this limitation, we propose the Energy-based Open Set domain adaptation (EOS) method. EOS introduces a novel two-stage approach involving a separation stage followed by an alignment stage. In the separation stage, we employ an energy-based anomaly detection strategy to identify unknown samples, transforming the traditional K-class classification task into a K+1-dimensional classifier by introducing an additional dimension to model the uncertainty of out-of-distribution samples. To further refine separation, we apply a coarse-to-fine method that iteratively improves the separation outcomes, which are integrated as weighted inputs in the alignment process to enhance feature distribution alignment. In the alignment stage, we employ a dynamic weighted synergistic mechanism, where the separation network and alignment network co-evolve through continuous alternating training. This mechanism enables the system to better adapt to invariant features across domains. We evaluate EOS on standard benchmarks, including Office-31, Office-Home, and VisDA-2017, with experimental results demonstrating that EOS consistently outperforms other state-of-the-art methods.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"24 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01857-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Open Set Domain Adaptation (OSDA) aims to minimize domain variation while distinguishing between known and unknown samples. However, existing OSDA methods, which rely on deep neural network classifiers, often lead to overconfident predictions and fail to clearly demarcate known from unknown samples. To address this limitation, we propose the Energy-based Open Set domain adaptation (EOS) method. EOS introduces a novel two-stage approach involving a separation stage followed by an alignment stage. In the separation stage, we employ an energy-based anomaly detection strategy to identify unknown samples, transforming the traditional K-class classification task into a K+1-dimensional classifier by introducing an additional dimension to model the uncertainty of out-of-distribution samples. To further refine separation, we apply a coarse-to-fine method that iteratively improves the separation outcomes, which are integrated as weighted inputs in the alignment process to enhance feature distribution alignment. In the alignment stage, we employ a dynamic weighted synergistic mechanism, where the separation network and alignment network co-evolve through continuous alternating training. This mechanism enables the system to better adapt to invariant features across domains. We evaluate EOS on standard benchmarks, including Office-31, Office-Home, and VisDA-2017, with experimental results demonstrating that EOS consistently outperforms other state-of-the-art methods.

基于能量的动态加权协同机制的开集域自适应
开放集域自适应(OSDA)的目标是在区分已知和未知样本的同时最小化域变化。然而,现有的OSDA方法依赖于深度神经网络分类器,往往导致过度自信的预测,并且不能清楚地区分已知和未知样本。为了解决这一限制,我们提出了基于能量的开放集域自适应(EOS)方法。EOS引入了一种新的两阶段方法,包括分离阶段,然后是对齐阶段。在分离阶段,我们采用基于能量的异常检测策略来识别未知样本,通过引入额外的维度来建模分布外样本的不确定性,将传统的K类分类任务转化为K+1维分类器。为了进一步细化分离,我们采用了一种从粗到细的方法,迭代改进分离结果,并将其作为加权输入集成到对齐过程中,以增强特征分布对齐。在对齐阶段,我们采用动态加权协同机制,分离网络和对齐网络通过连续交替训练共同进化。这种机制使系统能够更好地适应跨域的不变特征。我们在标准基准上评估EOS,包括Office-31, Office-Home和VisDA-2017,实验结果表明EOS始终优于其他最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信