{"title":"A Dense Subframe-Based SLAM Framework With Side-Scan Sonar","authors":"Jun Zhang;Yiping Xie;Li Ling;John Folkesson","doi":"10.1109/JOE.2024.3503663","DOIUrl":null,"url":null,"abstract":"Side-scan sonar (SSS) is a lightweight acoustic sensor commonly deployed on autonomous underwater vehicles (AUVs) to provide high-resolution seafloor images. However, leveraging side-scan images for simultaneous localization and mapping (SLAM) presents a notable challenge, primarily due to the difficulty of establishing a sufficient number of accurate correspondences between these images. To address this, we introduce a novel subframe-based dense SLAM framework utilizing SSS data, enabling effective dense matching in overlapping regions of paired side-scan images. With each image being evenly divided into subframes, we propose a robust estimation pipeline to estimate the relative pose between each paired subframe using a good inlier set identified from dense correspondences. These relative poses are then integrated as edge constraints in a factor graph to optimize the AUV pose trajectory. The proposed framework is evaluated on three real data sets collected by a Hugin AUV. One of these data sets contains manually annotated keypoint correspondences as ground truth and is used for the evaluation of pose trajectory. We also present a feasible way of evaluating mapping quality against multi-beam echosounder data without the influence of pose. Experimental results demonstrate that our approach effectively mitigates drift from the dead-reckoning system and enables quasi-dense bathymetry reconstruction.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"50 2","pages":"1087-1102"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10817085","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10817085/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Side-scan sonar (SSS) is a lightweight acoustic sensor commonly deployed on autonomous underwater vehicles (AUVs) to provide high-resolution seafloor images. However, leveraging side-scan images for simultaneous localization and mapping (SLAM) presents a notable challenge, primarily due to the difficulty of establishing a sufficient number of accurate correspondences between these images. To address this, we introduce a novel subframe-based dense SLAM framework utilizing SSS data, enabling effective dense matching in overlapping regions of paired side-scan images. With each image being evenly divided into subframes, we propose a robust estimation pipeline to estimate the relative pose between each paired subframe using a good inlier set identified from dense correspondences. These relative poses are then integrated as edge constraints in a factor graph to optimize the AUV pose trajectory. The proposed framework is evaluated on three real data sets collected by a Hugin AUV. One of these data sets contains manually annotated keypoint correspondences as ground truth and is used for the evaluation of pose trajectory. We also present a feasible way of evaluating mapping quality against multi-beam echosounder data without the influence of pose. Experimental results demonstrate that our approach effectively mitigates drift from the dead-reckoning system and enables quasi-dense bathymetry reconstruction.
期刊介绍:
The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.