Qiaoju Zhang , Xi Luo , Yuwen Zheng , Junqiao Zheng , Xinying Wu , Jun Shi
{"title":"Breaking the scar barrier: The anti-fibrotic and hemodynamic benefits of total salvianolic acid in hypertrophic scars","authors":"Qiaoju Zhang , Xi Luo , Yuwen Zheng , Junqiao Zheng , Xinying Wu , Jun Shi","doi":"10.1016/j.taap.2025.117339","DOIUrl":null,"url":null,"abstract":"<div><h3>Abstract</h3><div>Hypertrophic scars (HS) affect up to 70 % of individuals following deep dermal injuries, burns, or surgical procedures, leading to significant functional impairments and psychological distress. Despite their high prevalence, effective therapeutic options remain limited, and the underlying pathophysiology is not fully elucidated. This study integrates network pharmacology, molecular docking, and in vivo experimentation to investigate the therapeutic potential of total salvianolic acid (TSA) from <em>Salvia miltiorrhiza</em> in HS treatment. A systematic pharmacology approach identified 186 target proteins, highlighting TGF-β1, Smad3, IL-2, and IL-4 as key modulators of fibrosis and inflammation. Molecular docking confirmed high-affinity interactions between TSA's active components and these targets. TSA significantly reduced scar elevation, fibrosis, and collagen deposition in a rabbit ear hypertrophic scar model, restoring tissue architecture and improving hemorheological parameters. Histological and immunohistochemical analyses confirmed TSA's ability to suppress TGF-β/Smad signaling, downregulate inflammatory cytokines and normalize collagen dynamics. These findings provide compelling evidence that TSA is a multi-targeted, pharmacologically active compound with promising anti-fibrotic and microcirculatory benefits, paving the way for novel therapeutic strategies in HS management. This study establishes a scientific foundation for TSA-based interventions, with potential clinical implications in regenerative medicine and scar therapy.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"499 ","pages":"Article 117339"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X25001152","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Hypertrophic scars (HS) affect up to 70 % of individuals following deep dermal injuries, burns, or surgical procedures, leading to significant functional impairments and psychological distress. Despite their high prevalence, effective therapeutic options remain limited, and the underlying pathophysiology is not fully elucidated. This study integrates network pharmacology, molecular docking, and in vivo experimentation to investigate the therapeutic potential of total salvianolic acid (TSA) from Salvia miltiorrhiza in HS treatment. A systematic pharmacology approach identified 186 target proteins, highlighting TGF-β1, Smad3, IL-2, and IL-4 as key modulators of fibrosis and inflammation. Molecular docking confirmed high-affinity interactions between TSA's active components and these targets. TSA significantly reduced scar elevation, fibrosis, and collagen deposition in a rabbit ear hypertrophic scar model, restoring tissue architecture and improving hemorheological parameters. Histological and immunohistochemical analyses confirmed TSA's ability to suppress TGF-β/Smad signaling, downregulate inflammatory cytokines and normalize collagen dynamics. These findings provide compelling evidence that TSA is a multi-targeted, pharmacologically active compound with promising anti-fibrotic and microcirculatory benefits, paving the way for novel therapeutic strategies in HS management. This study establishes a scientific foundation for TSA-based interventions, with potential clinical implications in regenerative medicine and scar therapy.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.