Ying Fang, Suraj Mullurkara, Keith M. Taddei, Paul R. Ohodnicki, Guofeng Wang
{"title":"Machine learning enabled accurate prediction of structural and magnetic properties of cobalt ferrite","authors":"Ying Fang, Suraj Mullurkara, Keith M. Taddei, Paul R. Ohodnicki, Guofeng Wang","doi":"10.1038/s41524-025-01598-2","DOIUrl":null,"url":null,"abstract":"<p>A machine learning enabled computational approach has been developed to accurately predict the equilibrium degree of inversion in spinel lattice and some magnetic properties of cobalt ferrite (CoFe₂O₄) crystal. The computational approach is composed of construction of a database from density functional theory calculations, training of machine learning models, and atomistic simulations. Support vector regression was employed to derive the relation between system energy and atomic structures of CoFe₂O₄. Using this trained machine learning model, atomistic Monte Carlo simulations predicted the equilibrium degree of inversion of CoFe₂O₄ to be 0.755 at 1237 K. The strength of twenty-three types of superexchange interactions were determined using the linear regression model and further applied in magnetic Monte Carlo simulations to predict the Curie temperature of CoFe<sub>2</sub>O<sub>4</sub> to be 914 K. The predictions from the presented computational approach are well validated by the results from neutron diffraction measurement on CoFe₂O₄.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"9 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01598-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A machine learning enabled computational approach has been developed to accurately predict the equilibrium degree of inversion in spinel lattice and some magnetic properties of cobalt ferrite (CoFe₂O₄) crystal. The computational approach is composed of construction of a database from density functional theory calculations, training of machine learning models, and atomistic simulations. Support vector regression was employed to derive the relation between system energy and atomic structures of CoFe₂O₄. Using this trained machine learning model, atomistic Monte Carlo simulations predicted the equilibrium degree of inversion of CoFe₂O₄ to be 0.755 at 1237 K. The strength of twenty-three types of superexchange interactions were determined using the linear regression model and further applied in magnetic Monte Carlo simulations to predict the Curie temperature of CoFe2O4 to be 914 K. The predictions from the presented computational approach are well validated by the results from neutron diffraction measurement on CoFe₂O₄.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.