Wei Siang, Jiang Li Jin, Jiao Yinming, Lin Wenji, Feng Yan
{"title":"Effects of Dietary Fiber and Acetate on Alcoholic Heart Disease and Intestinal Microbes in Mice","authors":"Wei Siang, Jiang Li Jin, Jiao Yinming, Lin Wenji, Feng Yan","doi":"10.1002/mnfr.70040","DOIUrl":null,"url":null,"abstract":"Alcoholic heart disease (AHD) is a severe cardiovascular condition linked to chronic alcohol consumption. This study investigates the effects of a high-fiber diet and acetate on gut microbiota and cardiac function in AHD mouse models. Sixty male C57BL/6 mice were divided into six groups, receiving either a control diet, high-fiber diet, or acetate supplementation alongside alcohol treatment. Results revealed that cardiac fibrosis and heart failure were notably improved in the AHD mice receiving high-fiber or acetate diets. Transcriptomic analyses indicated that dietary interventions modulated the expression of genes involved in lipid metabolism and the TGF-β signaling pathway. Additionally, 16S rRNA sequencing showed that the high-fiber diet and acetate altered gut microbiota composition, enhancing the abundance of beneficial bacteria such as <i>Akkermansia muciniphila</i>, <i>Lactobacillus intestinalis</i>, and <i>Bacteroides acidifaciens</i>. These microbes exhibited positive correlations with genes related to fat metabolism and TGF-β signaling, suggesting a potential mechanism for gut microbiota's role in AHD pathology. ROC analysis identified these bacteria as promising biomarkers for AHD detection. Overall, our findings underscore the therapeutic potential of dietary fiber and acetate in modulating gut microbiota and improving cardiac function in AHD, highlighting the intricate relationship between gut health and cardiovascular disease management.","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"37 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/mnfr.70040","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alcoholic heart disease (AHD) is a severe cardiovascular condition linked to chronic alcohol consumption. This study investigates the effects of a high-fiber diet and acetate on gut microbiota and cardiac function in AHD mouse models. Sixty male C57BL/6 mice were divided into six groups, receiving either a control diet, high-fiber diet, or acetate supplementation alongside alcohol treatment. Results revealed that cardiac fibrosis and heart failure were notably improved in the AHD mice receiving high-fiber or acetate diets. Transcriptomic analyses indicated that dietary interventions modulated the expression of genes involved in lipid metabolism and the TGF-β signaling pathway. Additionally, 16S rRNA sequencing showed that the high-fiber diet and acetate altered gut microbiota composition, enhancing the abundance of beneficial bacteria such as Akkermansia muciniphila, Lactobacillus intestinalis, and Bacteroides acidifaciens. These microbes exhibited positive correlations with genes related to fat metabolism and TGF-β signaling, suggesting a potential mechanism for gut microbiota's role in AHD pathology. ROC analysis identified these bacteria as promising biomarkers for AHD detection. Overall, our findings underscore the therapeutic potential of dietary fiber and acetate in modulating gut microbiota and improving cardiac function in AHD, highlighting the intricate relationship between gut health and cardiovascular disease management.
期刊介绍:
Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines:
Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics.
Immunology: Understanding the interactions of food and the immune system.
Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes.
Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.