{"title":"Fast machine learning for building management systems","authors":"Mohammed Mshragi, Ioan Petri","doi":"10.1007/s10462-025-11226-6","DOIUrl":null,"url":null,"abstract":"<div><p>Building management systems (BMSs) are increasingly integrating advanced machine learning (ML) and artificial intelligence (AI) capabilities to enhance operational efficiency and responsiveness. The transformation of BMSs involves a wide range of environmental, behavioural, economical and technical factors as well as optimum performance considerations in order to reach energy efficiency and for long term sustainability. Existing BMSs can only provide local adaptability by creating and managing information for a built asset lacking the capability to learn and adapt based on performance objectives. This research provides a comprehensive review of ML techniques in BMSs, with particular emphasis and demonstration of fast machine learning (FastML) techniques in a real-case study application. The study reviews optimization methods for ML algorithms, focusing on Long Short-Term Memory (LSTM) networks for energy consumption forecasting and exploring solutions that leverage hardware accelerators for low-latency and high-throughput processing. The High-Level Synthesis for Machine Learning (HLS4ML) framework facilitates deployment of fast machine learning models with BMSs, achieving substantial gains in hardware efficiency and inference speed in resource-constrained environments. Findings reveal that HLS4ML-optimized models maintain accuracy while offering computational efficiency through techniques like pruning and quantization, supporting real-time BMS applications. This research significantly contributes to the development of intelligent BMSs by integrating ML algorithms with advanced hardware solutions, ultimately improving energy management, occupant comfort, and safety in modern buildings.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 7","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11226-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11226-6","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Building management systems (BMSs) are increasingly integrating advanced machine learning (ML) and artificial intelligence (AI) capabilities to enhance operational efficiency and responsiveness. The transformation of BMSs involves a wide range of environmental, behavioural, economical and technical factors as well as optimum performance considerations in order to reach energy efficiency and for long term sustainability. Existing BMSs can only provide local adaptability by creating and managing information for a built asset lacking the capability to learn and adapt based on performance objectives. This research provides a comprehensive review of ML techniques in BMSs, with particular emphasis and demonstration of fast machine learning (FastML) techniques in a real-case study application. The study reviews optimization methods for ML algorithms, focusing on Long Short-Term Memory (LSTM) networks for energy consumption forecasting and exploring solutions that leverage hardware accelerators for low-latency and high-throughput processing. The High-Level Synthesis for Machine Learning (HLS4ML) framework facilitates deployment of fast machine learning models with BMSs, achieving substantial gains in hardware efficiency and inference speed in resource-constrained environments. Findings reveal that HLS4ML-optimized models maintain accuracy while offering computational efficiency through techniques like pruning and quantization, supporting real-time BMS applications. This research significantly contributes to the development of intelligent BMSs by integrating ML algorithms with advanced hardware solutions, ultimately improving energy management, occupant comfort, and safety in modern buildings.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.