Electron mobility in silicon under high uniaxial strain

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Nicolas Roisin, Loïc Lahaye, Jean-Pierre Raskin, Denis Flandre
{"title":"Electron mobility in silicon under high uniaxial strain","authors":"Nicolas Roisin,&nbsp;Loïc Lahaye,&nbsp;Jean-Pierre Raskin,&nbsp;Denis Flandre","doi":"10.1016/j.sse.2025.109118","DOIUrl":null,"url":null,"abstract":"<div><div>In the pursuit of improving the performance of semiconductor devices, the manipulation of material properties through strain engineering has emerged as a promising avenue. In this work, the enhancement of the electron mobility in silicon has been experimentally investigated for uniaxial strain up to almost 1% along the [100] crystal direction. The experimental data have been obtained from n-doped silicon beams strained using four-point bending scheme. To complement the experimental measurements that present a mobility enhancement of about 65%, first-principles calculations have been conducted to determine the splitting of the conduction bands and the changes in the effective masses induced by the strain. A semi-empirical model is finally used to predict the undoped behavior, which forecast a mobility increase close to 1000 cm<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>V<sup>−1</sup>s<sup>−1</sup> for a strain of about 1%.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"227 ","pages":"Article 109118"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125000632","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the pursuit of improving the performance of semiconductor devices, the manipulation of material properties through strain engineering has emerged as a promising avenue. In this work, the enhancement of the electron mobility in silicon has been experimentally investigated for uniaxial strain up to almost 1% along the [100] crystal direction. The experimental data have been obtained from n-doped silicon beams strained using four-point bending scheme. To complement the experimental measurements that present a mobility enhancement of about 65%, first-principles calculations have been conducted to determine the splitting of the conduction bands and the changes in the effective masses induced by the strain. A semi-empirical model is finally used to predict the undoped behavior, which forecast a mobility increase close to 1000 cm2V−1s−1 for a strain of about 1%.
高单轴应变下硅中的电子迁移率
在追求提高半导体器件性能的过程中,通过应变工程来操纵材料性能已经成为一种有前途的途径。在这项工作中,实验研究了硅中电子迁移率的增强,沿[100]晶体方向的单轴应变高达近1%。实验数据来自于采用四点弯曲方案应变的n掺杂硅梁。为了补充表明迁移率提高约65%的实验测量结果,进行了第一性原理计算来确定导带的分裂和应变引起的有效质量的变化。最后用半经验模型预测了未掺杂的行为,预测了1%应变下迁移率增加接近1000 cm2V−1s−1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信