Phuong X. Nguyen, Liguo Ma, Raghav Chaturvedi, Kenji Watanabe, Takashi Taniguchi, Jie Shan, Kin Fai Mak
{"title":"Perfect Coulomb drag in a dipolar excitonic insulator","authors":"Phuong X. Nguyen, Liguo Ma, Raghav Chaturvedi, Kenji Watanabe, Takashi Taniguchi, Jie Shan, Kin Fai Mak","doi":"10.1126/science.adl1829","DOIUrl":null,"url":null,"abstract":"<div >Excitonic insulators (EIs) are a solid-state prototype for bosonic phases of matter that can support charge-neutral exciton currents. However, demonstration of exciton transport in EIs is difficult. In this work, we show that the strong interlayer excitonic correlation at equal electron and hole densities in MoSe<sub>2</sub>/WSe<sub>2</sub> double layers separated by a 2-nanometer barrier yields perfect Coulomb drag under zero magnetic field: A charge current in one layer induces an equal but opposite drag current in the other layer at low temperatures. The drag current ratio remains above 0.9 up to about 20 kelvin. As exciton density increases above the Mott density, the excitons dissociate into an electron-hole plasma abruptly, and only frictional drag is observed. Our experiment may lead to the realization of exciton circuitry and superfluidity.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"388 6744","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adl1829","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Excitonic insulators (EIs) are a solid-state prototype for bosonic phases of matter that can support charge-neutral exciton currents. However, demonstration of exciton transport in EIs is difficult. In this work, we show that the strong interlayer excitonic correlation at equal electron and hole densities in MoSe2/WSe2 double layers separated by a 2-nanometer barrier yields perfect Coulomb drag under zero magnetic field: A charge current in one layer induces an equal but opposite drag current in the other layer at low temperatures. The drag current ratio remains above 0.9 up to about 20 kelvin. As exciton density increases above the Mott density, the excitons dissociate into an electron-hole plasma abruptly, and only frictional drag is observed. Our experiment may lead to the realization of exciton circuitry and superfluidity.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.