Efficient Al–H3NTB-MOG ECL Emitter with Self-Enhanced and AIECL Performance for Ultrasensitive Sensing of miRNA-141 Combined with a Y-Shaped Multiregion Dual-Drive DNA Walker

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Jin-Li Yang, Li Wang, Yi-Fei Chen, Zhen Wang, Ruo Yuan, Hai-Jun Wang
{"title":"Efficient Al–H3NTB-MOG ECL Emitter with Self-Enhanced and AIECL Performance for Ultrasensitive Sensing of miRNA-141 Combined with a Y-Shaped Multiregion Dual-Drive DNA Walker","authors":"Jin-Li Yang, Li Wang, Yi-Fei Chen, Zhen Wang, Ruo Yuan, Hai-Jun Wang","doi":"10.1021/acs.analchem.5c01402","DOIUrl":null,"url":null,"abstract":"In this work, using Al–H<sub>3</sub>NTB-MOG with self-enhanced and aggregation-induced electrochemiluminescence (AIECL) performance as an efficient emitter, a biosensor based on a Y-shaped multiregion dual-drive DNA walker was constructed for the sensitive detection of miRNA-141. Notably, 4,4′,4″-nitrilotribenzoic acid (H<sub>3</sub>NTB) was selected as the luminescent ligand with self-enhanced ECL property as the co-reactive tertiary amine in its structure. Al<sup>3+</sup> served as a central ion to coordinate with H<sub>3</sub>NTB to form a three-dimensional porous gel structure, which restricted internal rotation and vibration of the benzene molecules and exhibited an excellent AIECL property. More interestingly, <i>N</i>-2-hydroxyethylpiperazine-<i>N</i>′-ethane-sulfonic acid (HEPES) was chosen as the system buffer, which could not only stabilize the test environment but also play a co-reaction compensation role to compensate for the consumption of the co-reactive groups in the ECL process, then significantly resulting in better stability of ECL response. Besides, an efficient dynamic signal amplification system was established based on the synergistic effect of rolling cycle amplification (RCA) process and ionic cleavage at both ends of the Y-shaped DNA nanostructure assembled by the catalytic hairpin self-assembly (CHA) reaction. Specifically, two long DNA chains with abundant recognition regions were formed by the RCA reaction as a dual-drive DNA walker, which could simultaneously walk along the predesigned tracks and shear the specific sites from two directions, effectively improving the signal amplification efficiency. In that way, the constructed biosensor realized the detection of miRNA-141 from 10 aM to 1 nM range with a detection limit as low as 6.48 aM.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"90 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c01402","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, using Al–H3NTB-MOG with self-enhanced and aggregation-induced electrochemiluminescence (AIECL) performance as an efficient emitter, a biosensor based on a Y-shaped multiregion dual-drive DNA walker was constructed for the sensitive detection of miRNA-141. Notably, 4,4′,4″-nitrilotribenzoic acid (H3NTB) was selected as the luminescent ligand with self-enhanced ECL property as the co-reactive tertiary amine in its structure. Al3+ served as a central ion to coordinate with H3NTB to form a three-dimensional porous gel structure, which restricted internal rotation and vibration of the benzene molecules and exhibited an excellent AIECL property. More interestingly, N-2-hydroxyethylpiperazine-N′-ethane-sulfonic acid (HEPES) was chosen as the system buffer, which could not only stabilize the test environment but also play a co-reaction compensation role to compensate for the consumption of the co-reactive groups in the ECL process, then significantly resulting in better stability of ECL response. Besides, an efficient dynamic signal amplification system was established based on the synergistic effect of rolling cycle amplification (RCA) process and ionic cleavage at both ends of the Y-shaped DNA nanostructure assembled by the catalytic hairpin self-assembly (CHA) reaction. Specifically, two long DNA chains with abundant recognition regions were formed by the RCA reaction as a dual-drive DNA walker, which could simultaneously walk along the predesigned tracks and shear the specific sites from two directions, effectively improving the signal amplification efficiency. In that way, the constructed biosensor realized the detection of miRNA-141 from 10 aM to 1 nM range with a detection limit as low as 6.48 aM.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信