{"title":"Enhanced subpixel sensitivity in 3D-DIC via Spline-Based correlation map interpolation for vibration measurements","authors":"P. Neri, A. Paoli, A.V. Razionale, S. Barone","doi":"10.1016/j.optlastec.2025.112958","DOIUrl":null,"url":null,"abstract":"<div><div>Digital Image Correlation (DIC) is a well-established technique that has recently gained interest in the field of vibration measurements. As vibration frequency increases, the displacement amplitude decreases, determining the need for extremely high subpixel measurement sensitivity. This work introduces a novel algorithm that exploits a spline-based approach to interpolate the integer-valued correlation map and enhance subpixel sensitivity. The approach allows for the calibration of the fitting procedure with respect to the local features of the speckle pattern, which is characterized by the reference image, improving the measurement’s signal-to-noise ratio. The proposed procedure is compared with conventional approaches, which are based on polynomial fitting of the correlation map instead. Additionally, two different strategies are discussed to compute the integer-valued correlation map, i.e. pixel domain convolution and spatial-frequency domain convolution. The algorithms’ performance is assessed in terms of temporal and spatial signal-to-noise ratio using synthetic and experimental datasets.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"188 ","pages":"Article 112958"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399225005493","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Digital Image Correlation (DIC) is a well-established technique that has recently gained interest in the field of vibration measurements. As vibration frequency increases, the displacement amplitude decreases, determining the need for extremely high subpixel measurement sensitivity. This work introduces a novel algorithm that exploits a spline-based approach to interpolate the integer-valued correlation map and enhance subpixel sensitivity. The approach allows for the calibration of the fitting procedure with respect to the local features of the speckle pattern, which is characterized by the reference image, improving the measurement’s signal-to-noise ratio. The proposed procedure is compared with conventional approaches, which are based on polynomial fitting of the correlation map instead. Additionally, two different strategies are discussed to compute the integer-valued correlation map, i.e. pixel domain convolution and spatial-frequency domain convolution. The algorithms’ performance is assessed in terms of temporal and spatial signal-to-noise ratio using synthetic and experimental datasets.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems