Curing strategies and bioactive peptide generation in ham: In vitro digestion and in silico evaluation

IF 8.5 1区 农林科学 Q1 CHEMISTRY, APPLIED
Noelia Hernández Correas , Alejandro Rodríguez Martínez , Adela Abellán , Horacio Pérez Sánchez , Luis Tejada
{"title":"Curing strategies and bioactive peptide generation in ham: In vitro digestion and in silico evaluation","authors":"Noelia Hernández Correas ,&nbsp;Alejandro Rodríguez Martínez ,&nbsp;Adela Abellán ,&nbsp;Horacio Pérez Sánchez ,&nbsp;Luis Tejada","doi":"10.1016/j.foodchem.2025.144360","DOIUrl":null,"url":null,"abstract":"<div><div>This study assessed the impact of curing salts and maturation times on peptide production and bioactivity in dry-cured hams using in vitro and in silico methods. Ninety-six hams underwent six curing treatments and two maturation stages (38 % and 42 % weight loss). Mass spectrometry identified bioactive peptides, while in silico tools predicted their bioactivities. Reduced sodium nitrifying salts (treatment IX) and 42 % weight loss showed the most significant results, enhancing low-molecular-weight peptides generation (EE, VG, VD) linked to high functionality. Antioxidant and antihypertensive activities were prominent in samples with 42 % weight loss. Peptides under 1.5 kDa were more abundant at advanced maturation stages. In silico analyses predicted ACE and DPP-IV inhibition and antioxidant effects. Dipeptides like DG, ES, and DV showed similarities to FDA-approved molecules, suggesting potential therapeutic uses. The study highlights those specific treatments boost biopeptides formation, requiring further research on their potential as functional foods or therapeutic agents.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"484 ","pages":"Article 144360"},"PeriodicalIF":8.5000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814625016115","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study assessed the impact of curing salts and maturation times on peptide production and bioactivity in dry-cured hams using in vitro and in silico methods. Ninety-six hams underwent six curing treatments and two maturation stages (38 % and 42 % weight loss). Mass spectrometry identified bioactive peptides, while in silico tools predicted their bioactivities. Reduced sodium nitrifying salts (treatment IX) and 42 % weight loss showed the most significant results, enhancing low-molecular-weight peptides generation (EE, VG, VD) linked to high functionality. Antioxidant and antihypertensive activities were prominent in samples with 42 % weight loss. Peptides under 1.5 kDa were more abundant at advanced maturation stages. In silico analyses predicted ACE and DPP-IV inhibition and antioxidant effects. Dipeptides like DG, ES, and DV showed similarities to FDA-approved molecules, suggesting potential therapeutic uses. The study highlights those specific treatments boost biopeptides formation, requiring further research on their potential as functional foods or therapeutic agents.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信