{"title":"Magnons from time-dependent density-functional perturbation theory and nonempirical Hubbard functionals","authors":"Luca Binci, Nicola Marzari, Iurii Timrov","doi":"10.1038/s41524-025-01570-0","DOIUrl":null,"url":null,"abstract":"<p>Spin excitations play a fundamental role in understanding magnetic properties of materials, and have significant technological implications for magnonic devices. However, accurately modeling these in transition-metal and rare-earth compounds remains a formidable challenge. Here, we present a fully first-principles approach for calculating spin-wave spectra based on time-dependent (TD) density-functional perturbation theory (DFPT), using nonempirical Hubbard functionals. This approach is implemented in a general noncollinear formulation, enabling the study of magnons in both collinear and noncollinear magnetic systems. Unlike methods that rely on empirical Hubbard <i>U</i> parameters to describe the ground state, and Heisenberg Hamiltonians for describing magnetic excitations, the methodology developed here probes directly the dynamical spin susceptibility (efficiently evaluated with TDDFPT throught the Liouville-Lanczos approach), and treats the linear variation of the Hubbard augmentation (in itself calculated non-empirically) in full at a self-consistent level. Furthermore, the method satisfies the Goldstone condition without requiring empirical rescaling of the exchange-correlation kernel or explicit enforcement of sum rules, in contrast to existing state-of-the-art techniques. We benchmark the novel computational scheme on prototypical transition-metal monoxides NiO and MnO, showing remarkable agreement with experiments and highlighting the fundamental role of these newly implemented Hubbard corrections. The method holds great promise for describing collective spin excitations in complex materials containing localized electronic states.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"218 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01570-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Spin excitations play a fundamental role in understanding magnetic properties of materials, and have significant technological implications for magnonic devices. However, accurately modeling these in transition-metal and rare-earth compounds remains a formidable challenge. Here, we present a fully first-principles approach for calculating spin-wave spectra based on time-dependent (TD) density-functional perturbation theory (DFPT), using nonempirical Hubbard functionals. This approach is implemented in a general noncollinear formulation, enabling the study of magnons in both collinear and noncollinear magnetic systems. Unlike methods that rely on empirical Hubbard U parameters to describe the ground state, and Heisenberg Hamiltonians for describing magnetic excitations, the methodology developed here probes directly the dynamical spin susceptibility (efficiently evaluated with TDDFPT throught the Liouville-Lanczos approach), and treats the linear variation of the Hubbard augmentation (in itself calculated non-empirically) in full at a self-consistent level. Furthermore, the method satisfies the Goldstone condition without requiring empirical rescaling of the exchange-correlation kernel or explicit enforcement of sum rules, in contrast to existing state-of-the-art techniques. We benchmark the novel computational scheme on prototypical transition-metal monoxides NiO and MnO, showing remarkable agreement with experiments and highlighting the fundamental role of these newly implemented Hubbard corrections. The method holds great promise for describing collective spin excitations in complex materials containing localized electronic states.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.