{"title":"Melatonin and Hydrogen Sulfide Signaling Synergistically Enhance Iron Bioavailability and Stress Resilience in Strawberry Under Iron Deficiency","authors":"Cengiz Kaya","doi":"10.1002/fes3.70084","DOIUrl":null,"url":null,"abstract":"<p>Iron (Fe) deficiency is a critical constraint on global food security, particularly affecting high-value horticultural crops such as strawberries (<i>Fragaria × ananassa</i>). This study examines the roles of melatonin and hydrogen sulfide (H<sub>2</sub>S) signaling in mitigating Fe deficiency stress by improving Fe bioavailability and enhancing plant resilience. Strawberry plants were cultivated under Fe-sufficient and Fe-deficient conditions and treated with 100 μM melatonin and 3 mM dl-propargylglycine (PAG), an inhibitor of L-cysteine desulfhydrase (L-DES), which regulates H<sub>2</sub>S production. Fe deficiency significantly reduced chlorophyll content and photosynthetic efficiency while elevating oxidative stress markers such as hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), malondialdehyde (MDA), and electrolyte leakage (EL). Melatonin application alleviated Fe deficiency effects by enhancing Fe utilization, stimulating L-DES activity, and promoting H<sub>2</sub>S production. Melatonin also improved antioxidant defenses by boosting the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), as well as maintaining ascorbate-glutathione (AsA-GSH) redox dynamics. The addition of 3 mM PAG inhibited L-DES activity, resulting in reduced H<sub>2</sub>S levels and diminished melatonin-induced benefits, underscoring the essential role of L-DES-mediated H<sub>2</sub>S synthesis. Despite the presence of PAG, the co-application of 0.2 mM sodium hydrosulfide (NaHS) and melatonin restored Fe bioavailability, growth, and antioxidant capacity, suggesting a synergistic interaction between melatonin and H<sub>2</sub>S. This study highlights the potential of melatonin and H<sub>2</sub>S signaling to improve Fe homeostasis and mitigate oxidative stress in Fe-deficient plants. The findings offer strategies to enhance crop resilience and productivity in nutrient-deficient soils, thereby promoting sustainable agriculture and global food security.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":"14 2","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.70084","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Energy Security","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fes3.70084","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Iron (Fe) deficiency is a critical constraint on global food security, particularly affecting high-value horticultural crops such as strawberries (Fragaria × ananassa). This study examines the roles of melatonin and hydrogen sulfide (H2S) signaling in mitigating Fe deficiency stress by improving Fe bioavailability and enhancing plant resilience. Strawberry plants were cultivated under Fe-sufficient and Fe-deficient conditions and treated with 100 μM melatonin and 3 mM dl-propargylglycine (PAG), an inhibitor of L-cysteine desulfhydrase (L-DES), which regulates H2S production. Fe deficiency significantly reduced chlorophyll content and photosynthetic efficiency while elevating oxidative stress markers such as hydrogen peroxide (H2O2), malondialdehyde (MDA), and electrolyte leakage (EL). Melatonin application alleviated Fe deficiency effects by enhancing Fe utilization, stimulating L-DES activity, and promoting H2S production. Melatonin also improved antioxidant defenses by boosting the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), as well as maintaining ascorbate-glutathione (AsA-GSH) redox dynamics. The addition of 3 mM PAG inhibited L-DES activity, resulting in reduced H2S levels and diminished melatonin-induced benefits, underscoring the essential role of L-DES-mediated H2S synthesis. Despite the presence of PAG, the co-application of 0.2 mM sodium hydrosulfide (NaHS) and melatonin restored Fe bioavailability, growth, and antioxidant capacity, suggesting a synergistic interaction between melatonin and H2S. This study highlights the potential of melatonin and H2S signaling to improve Fe homeostasis and mitigate oxidative stress in Fe-deficient plants. The findings offer strategies to enhance crop resilience and productivity in nutrient-deficient soils, thereby promoting sustainable agriculture and global food security.
期刊介绍:
Food and Energy Security seeks to publish high quality and high impact original research on agricultural crop and forest productivity to improve food and energy security. It actively seeks submissions from emerging countries with expanding agricultural research communities. Papers from China, other parts of Asia, India and South America are particularly welcome. The Editorial Board, headed by Editor-in-Chief Professor Martin Parry, is determined to make FES the leading publication in its sector and will be aiming for a top-ranking impact factor.
Primary research articles should report hypothesis driven investigations that provide new insights into mechanisms and processes that determine productivity and properties for exploitation. Review articles are welcome but they must be critical in approach and provide particularly novel and far reaching insights.
Food and Energy Security offers authors a forum for the discussion of the most important advances in this field and promotes an integrative approach of scientific disciplines. Papers must contribute substantially to the advancement of knowledge.
Examples of areas covered in Food and Energy Security include:
• Agronomy
• Biotechnological Approaches
• Breeding & Genetics
• Climate Change
• Quality and Composition
• Food Crops and Bioenergy Feedstocks
• Developmental, Physiology and Biochemistry
• Functional Genomics
• Molecular Biology
• Pest and Disease Management
• Post Harvest Biology
• Soil Science
• Systems Biology