Xiaohan Li , Xueru Han , Huan Yan , Hongyan Zhu , Hongcai Wang , Desheng Li , Yumin Tian , Yuhong Su
{"title":"From gut microbiota to host genes: A dual-regulatory pathway driving body weight variation in dagu chicken (Gallus gallus domesticus)","authors":"Xiaohan Li , Xueru Han , Huan Yan , Hongyan Zhu , Hongcai Wang , Desheng Li , Yumin Tian , Yuhong Su","doi":"10.1016/j.psj.2025.105067","DOIUrl":null,"url":null,"abstract":"<div><div>During the growth and development of animals, there is an interaction between the gut microbiota and the host genotype. The host genotype can regulate the microbiota, and in turn, the microbiota can influence host gene expression, thereby affecting the animal's production performance. This study explored the dynamic interplay between the gut microbiota and host gene expression in body weight variation in Dagu chicken, an indigenous poultry genetic resource in China. We characterized mucosa-associated microbiota across four gastrointestinal segments (duodenum, jejunum, ileum, cecum) and ileocecal chyme microbiota in 12-week-old Dagu chickens stratified by divergent body weight phenotypes, while simultaneously quantifying region-specific intestinal epithelial transcriptional regulation. 16S rDNA sequencing was employed to identify <em>Firmicutes</em> as the predominant bacterial phylum, with notable differences in the abundance of specific genera (e.g., <em>Ligilactobacillus</em> and <em>Lactobacillus</em>) being observed between the high- or low-body-weight groups. Enhanced biosynthesis pathways were functionally predicted in heavier roosters, whereas reduced nutrient metabolism pathways were contrasted. A conserved functional concordance was observed between regionally predominant differential microbiota and the physiological specialization of corresponding intestinal niches. Functional analysis revealed that the high-body-weight group demonstrated superior capabilities in microbial biosynthesis, whereas the low-body-weight group exhibited enhanced microbial metabolic activity. <em>NAA80</em> was identified as the common differentially expressed gene across all intestinal epithelial tissues. The Gene Ontology and KEGG pathway analyses revealed elevated nutrient absorption efficiency in the high-body-weight group, while the low-body-weight group demonstrated accelerated cellular renewal rates and shorter cycles. Correlation analysis identified significant associations between gut microbiota and host genes expression profiles, with the majority of correlations being positive. These results suggest a coordinated interaction between microbial communities and host genetic regulation, potentially driving phenotypic differences in body weight performance.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"104 6","pages":"Article 105067"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032579125003062","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
During the growth and development of animals, there is an interaction between the gut microbiota and the host genotype. The host genotype can regulate the microbiota, and in turn, the microbiota can influence host gene expression, thereby affecting the animal's production performance. This study explored the dynamic interplay between the gut microbiota and host gene expression in body weight variation in Dagu chicken, an indigenous poultry genetic resource in China. We characterized mucosa-associated microbiota across four gastrointestinal segments (duodenum, jejunum, ileum, cecum) and ileocecal chyme microbiota in 12-week-old Dagu chickens stratified by divergent body weight phenotypes, while simultaneously quantifying region-specific intestinal epithelial transcriptional regulation. 16S rDNA sequencing was employed to identify Firmicutes as the predominant bacterial phylum, with notable differences in the abundance of specific genera (e.g., Ligilactobacillus and Lactobacillus) being observed between the high- or low-body-weight groups. Enhanced biosynthesis pathways were functionally predicted in heavier roosters, whereas reduced nutrient metabolism pathways were contrasted. A conserved functional concordance was observed between regionally predominant differential microbiota and the physiological specialization of corresponding intestinal niches. Functional analysis revealed that the high-body-weight group demonstrated superior capabilities in microbial biosynthesis, whereas the low-body-weight group exhibited enhanced microbial metabolic activity. NAA80 was identified as the common differentially expressed gene across all intestinal epithelial tissues. The Gene Ontology and KEGG pathway analyses revealed elevated nutrient absorption efficiency in the high-body-weight group, while the low-body-weight group demonstrated accelerated cellular renewal rates and shorter cycles. Correlation analysis identified significant associations between gut microbiota and host genes expression profiles, with the majority of correlations being positive. These results suggest a coordinated interaction between microbial communities and host genetic regulation, potentially driving phenotypic differences in body weight performance.
期刊介绍:
First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers.
An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.