Xiao Jiang , Haibin Yu , Jiayu Yang , Xiaoli Liu , Zhu Li
{"title":"A new network structure for Parkinson's handwriting image recognition","authors":"Xiao Jiang , Haibin Yu , Jiayu Yang , Xiaoli Liu , Zhu Li","doi":"10.1016/j.medengphy.2025.104333","DOIUrl":null,"url":null,"abstract":"<div><div>Parkinson's disease (PD) remains a condition without a cure, though its early manifestations can be managed effectively by medical professionals. This underscores the significance of early detection of PD. It has been widely demonstrated that handwriting analysis is a promising avenue for early PD diagnosis. In recent research, there has been a pivot towards leveraging artificial intelligence (AI) technologies for analyzing handwriting images to aid in diagnosing the disease. This study introduces an innovative network architecture specifically designed to capture the nuances of tremor and irregular spacing characteristic of PD patients' handwriting. By incorporating an attention mechanism, this network is capable of prioritizing different areas within the handwriting feature map, according to their diagnostic relevance. This approach significantly enhances the accuracy of detecting PD through handwriting analysis, with our model achieving an impressive mean accuracy rate of 96.5 %. When compared to traditional convolutional neural networks, our attention-based continuous convolutional network model demonstrates a substantial increase in diagnostic precision.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"139 ","pages":"Article 104333"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453325000529","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's disease (PD) remains a condition without a cure, though its early manifestations can be managed effectively by medical professionals. This underscores the significance of early detection of PD. It has been widely demonstrated that handwriting analysis is a promising avenue for early PD diagnosis. In recent research, there has been a pivot towards leveraging artificial intelligence (AI) technologies for analyzing handwriting images to aid in diagnosing the disease. This study introduces an innovative network architecture specifically designed to capture the nuances of tremor and irregular spacing characteristic of PD patients' handwriting. By incorporating an attention mechanism, this network is capable of prioritizing different areas within the handwriting feature map, according to their diagnostic relevance. This approach significantly enhances the accuracy of detecting PD through handwriting analysis, with our model achieving an impressive mean accuracy rate of 96.5 %. When compared to traditional convolutional neural networks, our attention-based continuous convolutional network model demonstrates a substantial increase in diagnostic precision.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.