Physicochemical and microstructural characteristics of canola meal fermented by autonomously screened Bacillus licheniformis DY145 and its immunomodulatory effects on gut microbiota

IF 8.5 1区 农林科学 Q1 CHEMISTRY, APPLIED
Yan Wang, Kaining Cao, Xuanyi Zhang, Chong Li, Xiuna Wang, Xiaolan Liu, Jian Ren, Lingyun Chen
{"title":"Physicochemical and microstructural characteristics of canola meal fermented by autonomously screened Bacillus licheniformis DY145 and its immunomodulatory effects on gut microbiota","authors":"Yan Wang, Kaining Cao, Xuanyi Zhang, Chong Li, Xiuna Wang, Xiaolan Liu, Jian Ren, Lingyun Chen","doi":"10.1016/j.foodchem.2025.144291","DOIUrl":null,"url":null,"abstract":"Canola meal (CM), a variety of double-low rapeseed meal (RSM), is a valuable protein source due to its reduced glucosinolate (&lt;20 μmol/L) and erucic acid (&lt;2 %) content. In this study, bioactive small peptides were derived from CM through fermentation with an autonomously screened <em>Bacillus licheniformis</em> DY145 strain. Strain mutagenesis and fermentation condition optimization further enhanced peptide activity. The physicochemical and microstructural changes in fermented canola meal (FCM) were analyzed, and the immunomodulatory effects of active peptides on lipopolysaccharide (LPS)-induced inflammatory mice were investigated. Fermentation significantly increased the soluble peptide concentration and DPPH radical scavenging capacity of CM (<em>P</em> &lt; 0.05), while reducing protein molecular weight and glucosinolate content (<em>P</em> &lt; 0.05). Scanning electron microscopy revealed a loose structure in CM after fermentation, and canola peptides (CPs) from fermented CM exhibited higher zeta potential, a reduced α-helix ratio, and lower fluorescence intensity compared to those from unfermented CM. Structural characterization of CPs was performed using LC-MS/MS, followed by bioactivity analysis. CPs significantly downregulated serum levels of TNF-α, IL-6, and IL-1β in LPS-induced mice (<em>P</em> &lt; 0.05), while upregulating IgA and IgG levels (<em>P</em> &lt; 0.05). Moreover, CP supplementation restored the gut microbial composition, normalizing dominant flora and increasing <em>Lactobacillus</em> abundance (<em>P</em> &lt; 0.05). This study demonstrates the potential of CPs as functional food ingredients to mitigate gut inflammation and enhance the high-value utilization of CM. Additionally, it introduces a novel strain and fermentation method for bioactive peptide production, providing a theoretical foundation for the development of gut health-promoting functional foods. Furthermore, the preliminary structure–activity relationship analysis of CPs lays the groundwork for designing peptides with gut microbiota-modulating properties.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"48 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2025.144291","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Canola meal (CM), a variety of double-low rapeseed meal (RSM), is a valuable protein source due to its reduced glucosinolate (<20 μmol/L) and erucic acid (<2 %) content. In this study, bioactive small peptides were derived from CM through fermentation with an autonomously screened Bacillus licheniformis DY145 strain. Strain mutagenesis and fermentation condition optimization further enhanced peptide activity. The physicochemical and microstructural changes in fermented canola meal (FCM) were analyzed, and the immunomodulatory effects of active peptides on lipopolysaccharide (LPS)-induced inflammatory mice were investigated. Fermentation significantly increased the soluble peptide concentration and DPPH radical scavenging capacity of CM (P < 0.05), while reducing protein molecular weight and glucosinolate content (P < 0.05). Scanning electron microscopy revealed a loose structure in CM after fermentation, and canola peptides (CPs) from fermented CM exhibited higher zeta potential, a reduced α-helix ratio, and lower fluorescence intensity compared to those from unfermented CM. Structural characterization of CPs was performed using LC-MS/MS, followed by bioactivity analysis. CPs significantly downregulated serum levels of TNF-α, IL-6, and IL-1β in LPS-induced mice (P < 0.05), while upregulating IgA and IgG levels (P < 0.05). Moreover, CP supplementation restored the gut microbial composition, normalizing dominant flora and increasing Lactobacillus abundance (P < 0.05). This study demonstrates the potential of CPs as functional food ingredients to mitigate gut inflammation and enhance the high-value utilization of CM. Additionally, it introduces a novel strain and fermentation method for bioactive peptide production, providing a theoretical foundation for the development of gut health-promoting functional foods. Furthermore, the preliminary structure–activity relationship analysis of CPs lays the groundwork for designing peptides with gut microbiota-modulating properties.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信