Generative AI Integration in Leadership Practice: Foundations, Challenges, and Opportunities

IF 0.5 Q4 MANAGEMENT
Mary Tabata, Cris Wildermuth, Kevin Bottomley, Daniel Jenkins
{"title":"Generative AI Integration in Leadership Practice: Foundations, Challenges, and Opportunities","authors":"Mary Tabata,&nbsp;Cris Wildermuth,&nbsp;Kevin Bottomley,&nbsp;Daniel Jenkins","doi":"10.1002/jls.70005","DOIUrl":null,"url":null,"abstract":"<p>Integrating generative artificial intelligence (GenAI) into leadership practice represents a pivotal transformation in organizational dynamics, presenting unprecedented opportunities and complex challenges. The current article develops a comprehensive conceptual framework grounded in sociotechnical systems and complex adaptive leadership theories to guide future research and practice. By carefully examining leader-follower relationships, decision-making processes, and organizational learning patterns, we demonstrate how GenAI reshapes traditional leadership paradigms while raising critical ethical considerations. Our analysis reveals four key areas demanding attention: ethical decision-making in AI implementation, trust dynamics between human and artificial agents, GenAI literacy development across organizational levels, and integrating AI systems with existing organizational structures and governance policies. The framework emphasizes the crucial balance between technological advancement and human-centered leadership, particularly highlighting how the Human Interaction lens can guide responsible AI adoption. By identifying specific research questions in each domain, the article provides a roadmap for scholars and practitioners navigating the evolving landscape of AI-enhanced leadership.</p>","PeriodicalId":45503,"journal":{"name":"Journal of Leadership Studies","volume":"18 4","pages":"41-54"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leadership Studies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jls.70005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating generative artificial intelligence (GenAI) into leadership practice represents a pivotal transformation in organizational dynamics, presenting unprecedented opportunities and complex challenges. The current article develops a comprehensive conceptual framework grounded in sociotechnical systems and complex adaptive leadership theories to guide future research and practice. By carefully examining leader-follower relationships, decision-making processes, and organizational learning patterns, we demonstrate how GenAI reshapes traditional leadership paradigms while raising critical ethical considerations. Our analysis reveals four key areas demanding attention: ethical decision-making in AI implementation, trust dynamics between human and artificial agents, GenAI literacy development across organizational levels, and integrating AI systems with existing organizational structures and governance policies. The framework emphasizes the crucial balance between technological advancement and human-centered leadership, particularly highlighting how the Human Interaction lens can guide responsible AI adoption. By identifying specific research questions in each domain, the article provides a roadmap for scholars and practitioners navigating the evolving landscape of AI-enhanced leadership.

领导力实践中的生成式人工智能整合:基础、挑战和机遇
将生成式人工智能(GenAI)融入领导力实践代表着组织动态的关键转变,带来了前所未有的机遇和复杂的挑战。本文以社会技术系统和复杂适应性领导力理论为基础,建立了一个全面的概念框架,以指导未来的研究和实践。通过仔细研究领导者与追随者的关系、决策过程和组织学习模式,我们展示了 GenAI 如何重塑传统领导力范式,同时提出了关键的伦理问题。我们的分析揭示了需要关注的四个关键领域:人工智能实施过程中的伦理决策、人类与人工代理之间的信任动态、跨组织层面的 GenAI 素养发展,以及将人工智能系统与现有组织结构和治理政策相结合。该框架强调了技术进步与以人为本的领导力之间的重要平衡,尤其突出了人际互动视角如何指导负责任地采用人工智能。通过确定每个领域的具体研究问题,文章为学者和从业人员在不断发展的人工智能增强型领导力领域导航提供了路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
6.70%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信