Jangseop Lee;Taras Ravsher;Daniele Garbin;Sergiu Clima;Robin Degraeve;Attilio Belmonte;Hyunsang Hwang;Inhee Lee
{"title":"Optimizing Pulse Conditions for Enhanced Memory Performance of Se-Based Selector-Only Memory","authors":"Jangseop Lee;Taras Ravsher;Daniele Garbin;Sergiu Clima;Robin Degraeve;Attilio Belmonte;Hyunsang Hwang;Inhee Lee","doi":"10.1109/JEDS.2025.3557732","DOIUrl":null,"url":null,"abstract":"In this study, we investigated the effect of pulse falling time (Tfall) on the electrical characteristics of SiGeAsSe-based selector-only memory (SOM) devices. Our experimental results demonstrate that increasing the <inline-formula> <tex-math>$\\mathrm { T_{fall}}$ </tex-math></inline-formula> leads to an increased threshold voltage (Vth) and reduced <inline-formula> <tex-math>$\\mathrm { V_{th}}$ </tex-math></inline-formula> drift in SiGeAsSe devices. The optimized devices exhibit a remarkable memory window (> 1 V) and significantly suppressed drift characteristics (~10 mV/dec.). Electrical measurements at high temperatures demonstrate that <inline-formula> <tex-math>$\\mathrm { T_{fall}}$ </tex-math></inline-formula> is one of the important factors in material relaxation, and these improvements are attributed to the intentionally induced reconfiguration of the chalcogenide film. Furthermore, our results reveal that a suitable <inline-formula> <tex-math>$\\mathrm { T_{fall}}$ </tex-math></inline-formula> can effectively mitigate the degradation of the memory window at high temperatures. These findings afford valuable insights into the role of material relaxation in SOM devices, potentially aiding the development of high-performance memory devices.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"362-365"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10949046","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10949046/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we investigated the effect of pulse falling time (Tfall) on the electrical characteristics of SiGeAsSe-based selector-only memory (SOM) devices. Our experimental results demonstrate that increasing the $\mathrm { T_{fall}}$ leads to an increased threshold voltage (Vth) and reduced $\mathrm { V_{th}}$ drift in SiGeAsSe devices. The optimized devices exhibit a remarkable memory window (> 1 V) and significantly suppressed drift characteristics (~10 mV/dec.). Electrical measurements at high temperatures demonstrate that $\mathrm { T_{fall}}$ is one of the important factors in material relaxation, and these improvements are attributed to the intentionally induced reconfiguration of the chalcogenide film. Furthermore, our results reveal that a suitable $\mathrm { T_{fall}}$ can effectively mitigate the degradation of the memory window at high temperatures. These findings afford valuable insights into the role of material relaxation in SOM devices, potentially aiding the development of high-performance memory devices.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.