Liyang Zhang;Xu Zhang;Qun Zhou;Wu Kaiyue;Haiyun Luo;Yuntao Guo;Jinfeng Tie;Yangyang Fu
{"title":"Bacterial Aerosol Inactivation by DBD Plasma: Mechanisms, Kinetic Model, and Disinfection Dose","authors":"Liyang Zhang;Xu Zhang;Qun Zhou;Wu Kaiyue;Haiyun Luo;Yuntao Guo;Jinfeng Tie;Yangyang Fu","doi":"10.1109/TPS.2025.3538882","DOIUrl":null,"url":null,"abstract":"Atmospheric pressure dielectric barrier discharge (DBD) plasma has emerged as a promising method for efficient air disinfection in building environments. However, the mechanisms, kinetics, and disinfection doses required for bioaerosol inactivation by plasmas remain inadequately understood. In this study, we first applied optical photothermal infrared (O-PTIR) spectroscopy to examine the biological responses of bacterial aerosols to plasmas at the single-cell level. Significant carbonylation was observed in plasma-treated cells, indicating that oxidation is a crucial mechanism in bacterial aerosol inactivation. A preliminary multispecies kinetic model was proposed for bioaerosol disinfection by plasmas. By differentiating the roles of charged particles and neutral chemical species, the equivalent total chemical dose (ETCD) and equivalent total ionic dose (ETID) were introduced. ETCD primarily considers the oxidation potential of the reactive species in the plasma. The proposed model was applied to a DBD plasma-based air disinfection system and preliminarily validated. The relationship between the macroscopic dose (specific energy density, SED) and microscopic dose (ETCD) was uncovered. This study provides valuable insights into the modeling of plasma-bioaerosol interactions and the underlying mechanisms, offering a theoretical foundation for practical applications.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 4","pages":"539-552"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10907854/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Atmospheric pressure dielectric barrier discharge (DBD) plasma has emerged as a promising method for efficient air disinfection in building environments. However, the mechanisms, kinetics, and disinfection doses required for bioaerosol inactivation by plasmas remain inadequately understood. In this study, we first applied optical photothermal infrared (O-PTIR) spectroscopy to examine the biological responses of bacterial aerosols to plasmas at the single-cell level. Significant carbonylation was observed in plasma-treated cells, indicating that oxidation is a crucial mechanism in bacterial aerosol inactivation. A preliminary multispecies kinetic model was proposed for bioaerosol disinfection by plasmas. By differentiating the roles of charged particles and neutral chemical species, the equivalent total chemical dose (ETCD) and equivalent total ionic dose (ETID) were introduced. ETCD primarily considers the oxidation potential of the reactive species in the plasma. The proposed model was applied to a DBD plasma-based air disinfection system and preliminarily validated. The relationship between the macroscopic dose (specific energy density, SED) and microscopic dose (ETCD) was uncovered. This study provides valuable insights into the modeling of plasma-bioaerosol interactions and the underlying mechanisms, offering a theoretical foundation for practical applications.
期刊介绍:
The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.