Lian Wang;Yuxin Hao;Zhengqin Zhao;Qingxiang Liu;Yongliang Tang
{"title":"Simulation Study of Effective Ways to Improve the Emission Performance of Channel-Type Multipacting Cathode","authors":"Lian Wang;Yuxin Hao;Zhengqin Zhao;Qingxiang Liu;Yongliang Tang","doi":"10.1109/TPS.2025.3543826","DOIUrl":null,"url":null,"abstract":"This study presents a channel-type multipacting cathode and employs the particle-in-cell (PIC) and Monte Carlo (MC) simulation methods to investigate the influence of various cathode parameters, including channel material, channel aperture, axial applied electric field, and initial input current on emission performance. All these parameters are found to significantly affect the output current density of the cathode and are further optimized. The optimized cathode can achieve an output current density of 380 A/cm<sup>2</sup>, significantly enhancing the output current density of the multipacting cathode and providing valuable theoretical support for the design of cathodes with high current density.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 4","pages":"553-561"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10938857/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a channel-type multipacting cathode and employs the particle-in-cell (PIC) and Monte Carlo (MC) simulation methods to investigate the influence of various cathode parameters, including channel material, channel aperture, axial applied electric field, and initial input current on emission performance. All these parameters are found to significantly affect the output current density of the cathode and are further optimized. The optimized cathode can achieve an output current density of 380 A/cm2, significantly enhancing the output current density of the multipacting cathode and providing valuable theoretical support for the design of cathodes with high current density.
期刊介绍:
The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.