Rational hapten design, monoclonal antibody preparation, and immunoassays development for rapid detection of fomesafen in agricultural products and soil

IF 8.5 1区 农林科学 Q1 CHEMISTRY, APPLIED
Qingqing Gao , Jingqian Huo , Chang Wang , Jiayu Cao , Haijiao Dong , Jia Kang , Kaiwen Li , Zexiu An , Lai Chen , Jinlin Zhang
{"title":"Rational hapten design, monoclonal antibody preparation, and immunoassays development for rapid detection of fomesafen in agricultural products and soil","authors":"Qingqing Gao ,&nbsp;Jingqian Huo ,&nbsp;Chang Wang ,&nbsp;Jiayu Cao ,&nbsp;Haijiao Dong ,&nbsp;Jia Kang ,&nbsp;Kaiwen Li ,&nbsp;Zexiu An ,&nbsp;Lai Chen ,&nbsp;Jinlin Zhang","doi":"10.1016/j.foodchem.2025.144305","DOIUrl":null,"url":null,"abstract":"<div><div>Fomesafen is a diphenyl ether herbicide, and the residues in soil or agricultural products caused by its misused not only affect the yield and quality of sensitive crops, but also pose a threat to human health through the food chain. In order to achieve rapid and sensitive detection of fomesafen in situ, this study redesigned and synthesized two new haptens based on previous work, and obtained three monoclonal antibodies (mAbs). Indirect competitive ELISA (ic-ELISA) and lateral flow immunoassay (LFIA) methods were established based on heterologous haptens for fomesafen detection. The IC<sub>50</sub> value and linear range for ic-ELISA were 1.56 ± 0.24 ng/mL and 0.08–28.86 ng/mL, respectively. The sensitivity of ic-ELISA developed in this study increased by nearly 25 times compared to our previous work. Meanwhile, the visual limit of detection (vLOD) of LFIA was 2.5 ng/mL with the cutoff value of 16.0 ng/mL. This study is of great significance for achieving rapid on-site detection of fomesafen in agricultural products, soil, and other environmental matrices.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"483 ","pages":"Article 144305"},"PeriodicalIF":8.5000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814625015560","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Fomesafen is a diphenyl ether herbicide, and the residues in soil or agricultural products caused by its misused not only affect the yield and quality of sensitive crops, but also pose a threat to human health through the food chain. In order to achieve rapid and sensitive detection of fomesafen in situ, this study redesigned and synthesized two new haptens based on previous work, and obtained three monoclonal antibodies (mAbs). Indirect competitive ELISA (ic-ELISA) and lateral flow immunoassay (LFIA) methods were established based on heterologous haptens for fomesafen detection. The IC50 value and linear range for ic-ELISA were 1.56 ± 0.24 ng/mL and 0.08–28.86 ng/mL, respectively. The sensitivity of ic-ELISA developed in this study increased by nearly 25 times compared to our previous work. Meanwhile, the visual limit of detection (vLOD) of LFIA was 2.5 ng/mL with the cutoff value of 16.0 ng/mL. This study is of great significance for achieving rapid on-site detection of fomesafen in agricultural products, soil, and other environmental matrices.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信