Fang Shao , Xin Huang , Zhihong Ma , Liqin Li , Chunjian Qi
{"title":"Differences in chemotherapeutic drug sensitivity before and after patient-derived tumor organoid construction","authors":"Fang Shao , Xin Huang , Zhihong Ma , Liqin Li , Chunjian Qi","doi":"10.1016/j.taap.2025.117340","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Patient-derived organoids (PDOs) have emerged as promising preclinical models for various tumor types. This study aimed to optimize the process of constructing 3D organoid models and facilitate the development of personalized therapies for gastric and colon cancers.</div></div><div><h3>Methods</h3><div>Tumor tissues were divided into two parts: one part was dissociated into a single-cell suspension, and the other part was used to culture tumor organoids. RNA sequencing (RNA-seq) was performed on both tumor cells and cultured organoids. Four chemotherapeutic agents-Oxaliplatin (L-OHP), Gemcitabine (GEM), 5-Fluorouracil (5-FU), and Paclitaxel (PTX)-were utilized to assess cytotoxicity and proliferation in both organoids and freshly isolated tumor cells, then the effects of these agents were evaluated.</div></div><div><h3>Results</h3><div>Organoids were successfully established from both surgically resected and biopsy-derived tumor tissues. Phenotypic analysis indicated that the organoids retained the histological features and expression profiles of the original tumors. Notably, the morphological characteristics of the organoids remained stable across passages, demonstrating robust growth over time. Differentially expressed genes were identified in both gastric and colon cancer PDOs. GO and KEGG pathway analyses revealed similar gene enrichment in gastric and colon PDOs. Both gastric and colon cancer PDOs exhibited increased significant sensitivity to PTX and 5-FU compared to freshly isolated cancer cells. Furthermore, the expression of most stemness-related genes was reduced after organoid culture.</div></div><div><h3>Conclusions</h3><div>We successfully established organoid models that demonstrated robust growth and heightened drug sensitivity compared to freshly isolated tumor cells. These findings suggest that caution should be exercised when interpreting drug sensitivity results from organoid-based assays.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"499 ","pages":"Article 117340"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X25001164","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Patient-derived organoids (PDOs) have emerged as promising preclinical models for various tumor types. This study aimed to optimize the process of constructing 3D organoid models and facilitate the development of personalized therapies for gastric and colon cancers.
Methods
Tumor tissues were divided into two parts: one part was dissociated into a single-cell suspension, and the other part was used to culture tumor organoids. RNA sequencing (RNA-seq) was performed on both tumor cells and cultured organoids. Four chemotherapeutic agents-Oxaliplatin (L-OHP), Gemcitabine (GEM), 5-Fluorouracil (5-FU), and Paclitaxel (PTX)-were utilized to assess cytotoxicity and proliferation in both organoids and freshly isolated tumor cells, then the effects of these agents were evaluated.
Results
Organoids were successfully established from both surgically resected and biopsy-derived tumor tissues. Phenotypic analysis indicated that the organoids retained the histological features and expression profiles of the original tumors. Notably, the morphological characteristics of the organoids remained stable across passages, demonstrating robust growth over time. Differentially expressed genes were identified in both gastric and colon cancer PDOs. GO and KEGG pathway analyses revealed similar gene enrichment in gastric and colon PDOs. Both gastric and colon cancer PDOs exhibited increased significant sensitivity to PTX and 5-FU compared to freshly isolated cancer cells. Furthermore, the expression of most stemness-related genes was reduced after organoid culture.
Conclusions
We successfully established organoid models that demonstrated robust growth and heightened drug sensitivity compared to freshly isolated tumor cells. These findings suggest that caution should be exercised when interpreting drug sensitivity results from organoid-based assays.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.