Oliver Durnan;Reem Alshanbari;Hong-Rae Cho;Ioannis Kymissis;Chang-Hyun Kim
{"title":"Modeling the Increase in Effective Mobility in Short-Channel Oxide Thin-Film Transistors","authors":"Oliver Durnan;Reem Alshanbari;Hong-Rae Cho;Ioannis Kymissis;Chang-Hyun Kim","doi":"10.1109/JEDS.2025.3557401","DOIUrl":null,"url":null,"abstract":"This paper investigates the dependence of effective carrier mobility on the channel length in oxide thin-film transistors (TFTs). Bottom-gate staggered TFTs fabricated with a sputtered indium-galliumzinc-oxide channel exhibit a substantial increase in field-effect mobility with decreasing channel length, which is at variance with typical manifestation of contact resistance. An original model is thus proposed to describe the channel-length-dependent mobility in these TFTs. By decoupling local and intrinsic transport properties affecting the drain current, the model reproduces and rationalizes the observed phenomena. These results provide both a practical modeling tool and fundamental insights into the behaviors of oxide TFTs associated with the charge injection at their metal/semiconductor interface.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"350-354"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10948409","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10948409/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the dependence of effective carrier mobility on the channel length in oxide thin-film transistors (TFTs). Bottom-gate staggered TFTs fabricated with a sputtered indium-galliumzinc-oxide channel exhibit a substantial increase in field-effect mobility with decreasing channel length, which is at variance with typical manifestation of contact resistance. An original model is thus proposed to describe the channel-length-dependent mobility in these TFTs. By decoupling local and intrinsic transport properties affecting the drain current, the model reproduces and rationalizes the observed phenomena. These results provide both a practical modeling tool and fundamental insights into the behaviors of oxide TFTs associated with the charge injection at their metal/semiconductor interface.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.