Modeling the Increase in Effective Mobility in Short-Channel Oxide Thin-Film Transistors

IF 2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Oliver Durnan;Reem Alshanbari;Hong-Rae Cho;Ioannis Kymissis;Chang-Hyun Kim
{"title":"Modeling the Increase in Effective Mobility in Short-Channel Oxide Thin-Film Transistors","authors":"Oliver Durnan;Reem Alshanbari;Hong-Rae Cho;Ioannis Kymissis;Chang-Hyun Kim","doi":"10.1109/JEDS.2025.3557401","DOIUrl":null,"url":null,"abstract":"This paper investigates the dependence of effective carrier mobility on the channel length in oxide thin-film transistors (TFTs). Bottom-gate staggered TFTs fabricated with a sputtered indium-galliumzinc-oxide channel exhibit a substantial increase in field-effect mobility with decreasing channel length, which is at variance with typical manifestation of contact resistance. An original model is thus proposed to describe the channel-length-dependent mobility in these TFTs. By decoupling local and intrinsic transport properties affecting the drain current, the model reproduces and rationalizes the observed phenomena. These results provide both a practical modeling tool and fundamental insights into the behaviors of oxide TFTs associated with the charge injection at their metal/semiconductor interface.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"350-354"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10948409","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10948409/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the dependence of effective carrier mobility on the channel length in oxide thin-film transistors (TFTs). Bottom-gate staggered TFTs fabricated with a sputtered indium-galliumzinc-oxide channel exhibit a substantial increase in field-effect mobility with decreasing channel length, which is at variance with typical manifestation of contact resistance. An original model is thus proposed to describe the channel-length-dependent mobility in these TFTs. By decoupling local and intrinsic transport properties affecting the drain current, the model reproduces and rationalizes the observed phenomena. These results provide both a practical modeling tool and fundamental insights into the behaviors of oxide TFTs associated with the charge injection at their metal/semiconductor interface.
短沟道氧化物薄膜晶体管有效迁移率增长建模
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of the Electron Devices Society
IEEE Journal of the Electron Devices Society Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
5.20
自引率
4.30%
发文量
124
审稿时长
9 weeks
期刊介绍: The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信