{"title":"AI-Assisted Design of Drain-Extended FinFET With Stepped Field Plate for Multi-Purpose Applications","authors":"Xiaoyun Huang;Hongyu Tang;Chenggang Xu;Yuxuan Zhu;Yan Pan;Dawei Gao;Yitao Ma;Kai Xu","doi":"10.1109/JEDS.2025.3555327","DOIUrl":null,"url":null,"abstract":"Fin Field-Effect-Transistor (FinFET) has become fundamental components in advanced integrated circuit, while the drain-extended FinFET (DE-FinFET) features a lightly doped drain extension region to improve the device’s breakdown voltage. However, both structural refinement and the optimal integration of various parameters remain limited in achieving comprehensive optimization of device performance. This study introduces a novel DE-FinFET featuring a stepped field plate to improve overall performance of device. Moreover, within an AI-assisted design framework, predictive modeling and multi-objective optimization of the device are accomplished using Kolmogorov–Arnold Networks (KAN) and the Nondominated Sorting Genetic Algorithm (NSGA-III). More importantly, the proposed framework enables efficient device design and performance evaluation, achieving an average prediction accuracy of 98.19% for electrical performance metrics while being over two million times faster than traditional Technology Computer-Aided-Design (TCAD) simulations. In addition, it effectively generates Pareto-optimal solutions, delivering an average improvement of 9.03% across key electrical performance metrics. The proposed novel device of DE-FinFET offers a new route toward tailoring electrical properties. Meanwhile, the methodology of AI-assisted design not only accelerates device design but also enables customizable solutions for multi-purpose applications.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"326-333"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10943177","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10943177/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Fin Field-Effect-Transistor (FinFET) has become fundamental components in advanced integrated circuit, while the drain-extended FinFET (DE-FinFET) features a lightly doped drain extension region to improve the device’s breakdown voltage. However, both structural refinement and the optimal integration of various parameters remain limited in achieving comprehensive optimization of device performance. This study introduces a novel DE-FinFET featuring a stepped field plate to improve overall performance of device. Moreover, within an AI-assisted design framework, predictive modeling and multi-objective optimization of the device are accomplished using Kolmogorov–Arnold Networks (KAN) and the Nondominated Sorting Genetic Algorithm (NSGA-III). More importantly, the proposed framework enables efficient device design and performance evaluation, achieving an average prediction accuracy of 98.19% for electrical performance metrics while being over two million times faster than traditional Technology Computer-Aided-Design (TCAD) simulations. In addition, it effectively generates Pareto-optimal solutions, delivering an average improvement of 9.03% across key electrical performance metrics. The proposed novel device of DE-FinFET offers a new route toward tailoring electrical properties. Meanwhile, the methodology of AI-assisted design not only accelerates device design but also enables customizable solutions for multi-purpose applications.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.