Pragya R. Shrestha;Alexander Zaslavsky;Valery Ortiz Jimenez;Jason P. Campbell;Curt A. Richter
{"title":"Impact-Ionization-Based High-Endurance One-Transistor Bulk CMOS Cryogenic Memory","authors":"Pragya R. Shrestha;Alexander Zaslavsky;Valery Ortiz Jimenez;Jason P. Campbell;Curt A. Richter","doi":"10.1109/JEDS.2025.3552036","DOIUrl":null,"url":null,"abstract":"This paper presents a high-endurance capacitorless one-transistor (1T) cryogenic memory, fabricated in a 180 nm bulk CMOS technology, with a high memory window of (<inline-formula> <tex-math>$10{^{{7}}}~I_{1}$ </tex-math></inline-formula>/<inline-formula> <tex-math>$I_{0}$ </tex-math></inline-formula> sense current ratio) and prolonged retention. The memory is enabled by the bistable <inline-formula> <tex-math>$I_{D}$ </tex-math></inline-formula>–<inline-formula> <tex-math>$V_{G}$ </tex-math></inline-formula> transistor characteristics due to impact ionization (II) at cryogenic temperatures (T < 30 K). Focusing on critical memory reliability parameters—switching time, endurance, and retention characteristics—we present write/erase speeds down to <inline-formula> <tex-math>$\\approx ~45$ </tex-math></inline-formula> ns at T < 10 K and cycling endurance surpassing <inline-formula> <tex-math>$10^{9}$ </tex-math></inline-formula> cycles while maintaining the <inline-formula> <tex-math>$I_{1}$ </tex-math></inline-formula>/<inline-formula> <tex-math>$I_{0}$ </tex-math></inline-formula> memory window. Retention times of >10 s with a 30x memory window were observed in extensive high-speed measurements. The fast switching and retention characteristics combine to yield a low power (<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>W-range) candidate for local cache memory to support quantum sensing or quantum computing control circuitry. Additionally, our study outlines essential measurements crucial for exploring the viability of alternative memory solutions for low-temperature quantum sensing and computation applications.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"355-361"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10946245","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10946245/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a high-endurance capacitorless one-transistor (1T) cryogenic memory, fabricated in a 180 nm bulk CMOS technology, with a high memory window of ($10{^{{7}}}~I_{1}$ /$I_{0}$ sense current ratio) and prolonged retention. The memory is enabled by the bistable $I_{D}$ –$V_{G}$ transistor characteristics due to impact ionization (II) at cryogenic temperatures (T < 30 K). Focusing on critical memory reliability parameters—switching time, endurance, and retention characteristics—we present write/erase speeds down to $\approx ~45$ ns at T < 10 K and cycling endurance surpassing $10^{9}$ cycles while maintaining the $I_{1}$ /$I_{0}$ memory window. Retention times of >10 s with a 30x memory window were observed in extensive high-speed measurements. The fast switching and retention characteristics combine to yield a low power ($\mu $ W-range) candidate for local cache memory to support quantum sensing or quantum computing control circuitry. Additionally, our study outlines essential measurements crucial for exploring the viability of alternative memory solutions for low-temperature quantum sensing and computation applications.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.