{"title":"Investigating random discrete dopant-induced variability in cryogenic gate-all-around nanosheet FETs: A quantum transport simulation study","authors":"Jaehyun Lee","doi":"10.1016/j.sse.2025.109113","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the variability induced by random discrete dopants (RDDs) in the source and drain extension (SDE) regions in cryogenic <span><math><mi>n</mi></math></span>-type gate-all-around nanosheet field-effect transistors using the extensive quantum transport simulations. RDDs in the SDE regions effectively alter the channel length, necessitating a detailed analysis of the temperature dependence of short channel effects across a range from cryogenic (77 K) to room temperature (300 K). The results clearly demonstrate that cryogenic devices are more susceptible to random dopant fluctuation (RDF), exhibiting greater variability in threshold voltage, ON-state current, and drain-induced barrier lowering compared to devices operating at 300 K, even when the intrinsic channel device is considered. These findings emphasize the importance of rigorously addressing local variability, such as RDF, alongside process-induced variability in the design and optimization of cryogenic devices and associated circuits.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"227 ","pages":"Article 109113"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125000589","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the variability induced by random discrete dopants (RDDs) in the source and drain extension (SDE) regions in cryogenic -type gate-all-around nanosheet field-effect transistors using the extensive quantum transport simulations. RDDs in the SDE regions effectively alter the channel length, necessitating a detailed analysis of the temperature dependence of short channel effects across a range from cryogenic (77 K) to room temperature (300 K). The results clearly demonstrate that cryogenic devices are more susceptible to random dopant fluctuation (RDF), exhibiting greater variability in threshold voltage, ON-state current, and drain-induced barrier lowering compared to devices operating at 300 K, even when the intrinsic channel device is considered. These findings emphasize the importance of rigorously addressing local variability, such as RDF, alongside process-induced variability in the design and optimization of cryogenic devices and associated circuits.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.