Endogenous Enzyme-Activated Spatial Confinement DNA Nanowire with a Tumor Cell-Specific Response for High-Precision Imaging of the Tumor/Normal Cells Boundary

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Lei Wang, Tingting Zhao, Congkai Wang, Xiaohan Xu, Wang Yao, Xiaozhe Pang, Shenghao Xu, Xiliang Luo
{"title":"Endogenous Enzyme-Activated Spatial Confinement DNA Nanowire with a Tumor Cell-Specific Response for High-Precision Imaging of the Tumor/Normal Cells Boundary","authors":"Lei Wang, Tingting Zhao, Congkai Wang, Xiaohan Xu, Wang Yao, Xiaozhe Pang, Shenghao Xu, Xiliang Luo","doi":"10.1021/acs.analchem.5c00162","DOIUrl":null,"url":null,"abstract":"Developing tumor cell-specific imaging approaches is essential for the clear delineation of tumor margins. However, traditional imaging approaches suffered from low reaction kinetics as well as limited tumor specificity resulting from their “always active” sensing mode, making it difficult to accurately depict tumor boundary. To address these limitations, we developed an endogenous enzyme-activated spatial confinement DNA nanowire probe (E-SCNW) with an enhanced tumor/normal cell discrimination ratio for high precision imaging of the tumor/normal cells boundary. The spatial confinement effect can improve reaction kinetics, and the endogenous enzyme-activation design can confine fluorescence response to the tumor cells region. Additionally, no additional cell delivery carriers were required during the cross of the cell membrane into the intracellular space. It is worth noting that benefiting from the spatial confinement effect and endogenous enzyme-activation design, the detection limit was decreased by nearly 25.6-fold and the tumor/normal cells discrimination ratio was enhanced by nearly 4.46-fold through using E-SCNW, indicating promising prospects in high-precision imaging of the tumor/normal cells boundary.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"20 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c00162","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing tumor cell-specific imaging approaches is essential for the clear delineation of tumor margins. However, traditional imaging approaches suffered from low reaction kinetics as well as limited tumor specificity resulting from their “always active” sensing mode, making it difficult to accurately depict tumor boundary. To address these limitations, we developed an endogenous enzyme-activated spatial confinement DNA nanowire probe (E-SCNW) with an enhanced tumor/normal cell discrimination ratio for high precision imaging of the tumor/normal cells boundary. The spatial confinement effect can improve reaction kinetics, and the endogenous enzyme-activation design can confine fluorescence response to the tumor cells region. Additionally, no additional cell delivery carriers were required during the cross of the cell membrane into the intracellular space. It is worth noting that benefiting from the spatial confinement effect and endogenous enzyme-activation design, the detection limit was decreased by nearly 25.6-fold and the tumor/normal cells discrimination ratio was enhanced by nearly 4.46-fold through using E-SCNW, indicating promising prospects in high-precision imaging of the tumor/normal cells boundary.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信