{"title":"An Advanced DNA-Inspired Gray Wolf Algorithm for Kinetic Parameter Estimation in Supercritical Water Oxidation","authors":"Zhenhua Qin, Qilai Liang, Xiang Fu","doi":"10.1155/cplx/5523778","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Inspired by the genetic evolution mechanism of DNA, a hybrid DNA Gray Wolf Optimizer (hDNA-GWO) is proposed to develop an accurate kinetic model. This algorithm incorporates innovative DNA encoding, selection, crossover, and mutation operators inspired by genetic processes. We adopt the roulette-wheel method to select individuals with greater environmental adaptability from the current population to form the next population. The crossover operation involves swapping gene segments between paired chromosomes to create new individuals and maintain the population diversity. The mutation operator can maintain the diversity of the population, avoid the phenomenon of “premature” convergence, and effectively improve the local search capability. The performance of hDNA-GWO is investigated on typical benchmark functions compared to GWO, PSO, GWO-PSO, and GWO-GA. In addition, the superior search capabilities of our model are validated by kinetic parameter estimation using experimental data from supercritical water oxidation processes. The results indicate that the hDNA-GWO can overcome premature convergence and obtain higher-quality global optimal solutions.</p>\n </div>","PeriodicalId":50653,"journal":{"name":"Complexity","volume":"2025 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/cplx/5523778","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complexity","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/cplx/5523778","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Inspired by the genetic evolution mechanism of DNA, a hybrid DNA Gray Wolf Optimizer (hDNA-GWO) is proposed to develop an accurate kinetic model. This algorithm incorporates innovative DNA encoding, selection, crossover, and mutation operators inspired by genetic processes. We adopt the roulette-wheel method to select individuals with greater environmental adaptability from the current population to form the next population. The crossover operation involves swapping gene segments between paired chromosomes to create new individuals and maintain the population diversity. The mutation operator can maintain the diversity of the population, avoid the phenomenon of “premature” convergence, and effectively improve the local search capability. The performance of hDNA-GWO is investigated on typical benchmark functions compared to GWO, PSO, GWO-PSO, and GWO-GA. In addition, the superior search capabilities of our model are validated by kinetic parameter estimation using experimental data from supercritical water oxidation processes. The results indicate that the hDNA-GWO can overcome premature convergence and obtain higher-quality global optimal solutions.
期刊介绍:
Complexity is a cross-disciplinary journal focusing on the rapidly expanding science of complex adaptive systems. The purpose of the journal is to advance the science of complexity. Articles may deal with such methodological themes as chaos, genetic algorithms, cellular automata, neural networks, and evolutionary game theory. Papers treating applications in any area of natural science or human endeavor are welcome, and especially encouraged are papers integrating conceptual themes and applications that cross traditional disciplinary boundaries. Complexity is not meant to serve as a forum for speculation and vague analogies between words like “chaos,” “self-organization,” and “emergence” that are often used in completely different ways in science and in daily life.